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Abstract. We discuss the principles to be used in the construction of discrete time classical
and quantum mechanics as applied to point particle systems. In the classical theory this includes
the concept of virtual path and the construction of system functions from classical Lagrangians,
Cadzow’s variational principle applied to the action sum, Maeda–Noether and Logan invariants
of motion, elliptic and hyperbolic harmonic oscillator behaviour, gauge invariant electrodynamics
and charge conservation, and the Grassmannian oscillator. First quantized discrete time
mechanics is discussed via the concept of system amplitude, which permits the construction of
all quantities of interest such as commutators and scattering amplitudes. We discuss stroboscopic
quantum mechanics, or the construction of discrete time quantum theory from continuous time
quantum theory and show how this works in detail for the free Newtonian particle. We conclude
by applying the Schwinger action principle to the important case of the quantized discrete time
inhomogeneous oscillator.

1. Introduction

There are various circumstances in mechanics where it is convenient or necessary to replace
the continuous time (temporal evolution) parameter with a discrete parameter. Computer
simulation of waves is an example where the configuration of a system at timet + T is
calculated from a knowledge of its configuration at timest and t − T . There have been
various attempts to construct classical and quantum mechanical theories based on this notion,
such as the work of Cadzow [1], Logan [2], Maeda [3] and Lee [4]. The work of Yamamoto
et al [5], Hashimotoet al [6] and Klimek [7] indicates that the subject continues to receive
attention.

This paper considers the question: by which principles if any should continuous
time mechanical theories be discretized, that is, turned into discrete time analogues? By
discretization we do not mean the numerical approximation of continuous time mechanics
such as the work of Benderet al [8]. Neither do we discretize space or the dynamical
degrees of freedom. Our attention is fixed solely on replacing a continuous dynamical
evolution parameter with a discrete parameter. In this and the following paper, paper II
on discrete time classical field theory [9], our interest is in the construction of exact, self-
consistent discrete time mechanics with well specified principles, equations of motion and
predictions. This is motivated by the notion that at some unimaginably small scale, time
is really discrete. This has echoes in modern theories such as string theory and quantum
gravity, where the Planck time of 10−43 seconds sets a scale at which conventional notions
of space and time break down.

It could be argued that relativity requires a symmetrical treatment between time and
space but this leads to the situation of a spacetime lattice approach which has lost all
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relativistic symmetries and rotational invariance. We argue that relativity does distinguish
between timelike and spacelike, and by discretizing only time our approach reduces the
break with relativity to a minimum. Lorentz covariance is broken in our approach to field
theories, discussed in paper II, but the residual Euclidean invariances permit the construct
of particle-like states.

It may be felt objectionable that there is no natural concept of velocity in discrete
time mechanics. It could be argued that this lack destroys our intuitive feeling for dynamics
based on the notion of (say) a particle system evolving from an initial position and an initial
velocity. The correct way to see the situation is in terms of real numbers. In continuous
time mechanics, we normally consider a particle as having an instantaneous position and
an instantaneous velocity (we exclude Brownian particle dynamics from our definition of
continuous time mechanics). This information requires two real numbers for every degree of
freedom. In discrete time mechanics, there is no natural concept of simultaneity analogous
to this. What we mean by a ‘particle’ is something with a position at timet and a position
at time t − T , which also requires two real numbers for every degree of freedom. A
particle here is more properly associated with thelink between two successive points in
discrete time, rather than those times separately. So ultimately, the only major difference
in principle between continuous time and discrete time mechanics is the lack of the limit
processT → 0.

One problem with discrete time mechanics is a lack of guiding principles at key places,
which our series of papers attempts to address. For example, consider the discretization of
a system with LagrangianL = 1

2mẋ
2 − V (x). The approach taken by most authors would

be to replace the temporal derivatives by differences, symmetrize the potential in some way,
derive the analogue of the Euler–Lagrange equation, and finally evolve the system according
to the resulting difference equation. Quantities such as the energyE = 1

2mẋ
2+V (x) which

are conserved in continuous time mechanics would be monitored by calculating the value
ED of the discretized Hamiltonian.

It is more than likely however that a naive discretization of the Hamiltonian would
result in an expressionE′D which is not exactly conserved. This has been discovered by
many authors. It is a particular merit of Lee’s approach [4] that an invariant analogous to
the energy drops out of the formalism, but only at the expense of a dynamically evolving
discrete time interval.

It is somewhat surprising therefore that a computer simulation based on the above
principles should be judged as good or bad according to how constantE′D remains. In
the absence of any proper principle for the construction of invariants of motion it should
come as no surprise to find that occasionally a quantity such asE′D will vary enormously
and unpredictably during the course of a simulation. This happens because there are
actually three systems being confused; (1) the original continuous time theory, (2) a discrete
time system evolving exactly according to some well defined discretized Euler–Lagrange
equation, and (3) some unknown discrete time system for which the naively discretized
energy,E′D, would be an exact constant of the motion, but only for evolution under its own
discretized equation of motion, which could be very different to the equation of motion
for (2). On top of this there may be numerical uncertainties induced by the computer
algorithms used. Seen in this light, it would seem a wise policy to discretize according to
definite principles which would establish conserved quantities rigorously. The construction
of invariants of motion therefore becomes one of the principal objectives of discrete time
mechanics.

An important first step in the process of constructing rigorous discrete time mechanics
was the introduction of a discrete time action principle. This was done by Cadzow [1],
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giving a discrete time analogue of the Euler–Lagrange equation. We shall call such an
equation aCadzow’s equationfor the system. The construction of constants of motion was
considered by Maeda [3] in the case of continuous symmetries, whilst the construction of
constants of motion analogous to the energy had previously been considered by Logan [2].

Various features found in continuous time mechanics have discrete time analogues,
including Noether’s theorem, whilst certain other features either do not or cannot have
discrete time analogues. A particular problem arises, for example, with Hamiltonian
evolution and equations of motion derived using Poisson brackets. Not only is there no
possibility here of an infinitesimal translation in time (which thereby renders the notion of
a Hamiltonian problematic) but there is no natural concept of velocity as a limit either.
This makes the standard definition of conjugate momentum as the partial derivative of the
Lagrangian with respect to a velocity just as problematic. This has not prevented a number
of authors from constructing discrete time analogues of Poisson brackets, however, with
various degrees of success and utility, usually with the observation that the generator of
time translations is not conserved.

A feature of our approach is that we have found a clear principle for the definition
of conjugate momentum in discrete time mechanics. It turns outnot to be the partial
derivative of the ‘Lagrangian’ with respect to a difference in general, but does reduce to it
in various important cases. In addition, we have avoided trying to construct Hamiltonians
and equations of motion derived via Poisson brackets. In our formalism the Hamiltonian is
displaced by a Logan invariant, if such a quantity can be found. Fortunately such an object
does exist for the important case of the harmonic oscillator, which has ramifications in the
discrete time field theory discussed in the next paper in this series.

The overall plan for this and subsequent papers is as follows. In this paper (paper I) we
restrict our attention to classical and quantum point particle dynamics, reserving classical
field theory to paper II, quantum field theory to paper III, and quantum electrodynamics to
paper IV.

Topics covered in paper I are as follows. First we introduce the central concept of
system function. This replaces the Lagrangian as the key to the dynamics. With the system
function we can calculate equations of motion, construct invariants of the motion, and
quantize the system. We give a prescription for constructing the system function from
a given Lagrangian. We may use this prescription to embed symmetries into the system
function such as gauge invariance and hence construct electrodynamics. Then we discuss
the construction of invariants based on the work of Maeda, Noether, and Logan, and apply
it to the harmonic oscillator, which we discuss in detail. This key system lies at the heart
of particle field theory, discussed in the following papers, and it displays some important
properties, such as a natural cut-off for particle energy, for example. We also discuss particle
electrodynamics and the Grassmannian oscillator.

A major part of our programme is to develop discrete time quantum mechanics and
so we conclude our paper with a discussion of the principles for first quantization. This
includes the concept of system amplitude, the construction of unequal-time commutators,
and compatible operators. We then discuss the construction of discrete time quantum
mechanics from standard quantum mechanics via a stroboscopic approach and give an
explicit example. Finally, we apply the Schwinger action principle to the discrete time
inhomogeneous harmonic oscillator to construct the Feynman propagator for the oscillator,
in anticipation of its use in field theory.
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2. Action integrals and action sums

In continuous time mechanics Lagrangian dynamics is conventionally formulated via an
action principle based on the action integral

Aif [0] =
∫ tf

ti

dt L(q, q̇, t) (1)

where ti and tf are the initial and final times respectively along some given path0. In
our version of discrete time mechanics we postulate that the dynamical variablesq(t) are
observed or sampled at a finite number of timestn, n = 0, 1, . . . , N , where t0 = ti and
tN = tf , such that the intervalstn+1− tn are all equal to some fundamental intervalT . For
convenience we will writeqn ≡ q(tn).

It is possible to develop a theory where the time intervals vary dynamically along the
path. Such a mechanics was considered by Lee [4]. The extension of our methods to that
particular situation is left for a further article.

In our formulation of discrete time mechanics we replace the action integral (1) by an
action sum of the form

AN [0] =
N−1∑
n=0

Fn (2)

whereFn ≡ F(qn, qn+1, n) will be referred to as thesystem function. The system function
has the same central role in discrete time mechanics as the Lagrangian has in continuous time
mechanics. With it we may construct the equations of motion, define conjugate momenta,
construct constants of motion and attempt to quantize the system. In principle, we could
consider higher-order system functions which depend on (say)qn, qn+1, . . . , qn+r , r > 2,
but the caser = 1 represents the simplest possibility which could give rise to non-trivial
dynamics and will be considered exclusively from now on. Such system functions are the
discrete time analogues of Lagrangians of the canonical formL = L(q, q̇, t).

Another reason for considering only a second-order formulation(r = 1) is its direct
relationship to Hamilton’s principal function, discussed presently. Cadzow [1] applied a
variational principle to an action sum such as (2) and derived the equation of motion

∂

∂qn
{Fn−1+ Fn}=

c
0 0< n < N (3)

where the symbol=
c

denotes an equality holding over a true or dynamical trajectory. We

shall refer to (3) as aCadzow’s equation of motionfor the system. We now discuss the
interpretation of this equation.

Suppose we have a continuous time action integral of the form (1). First, partition the
time interval [t0, tN ] into N equal subintervals. Then the action integral may be written as
a sum of subintegrals, i.e.

Aif [0] =
N−1∑
n=0

∫ tn+1

tn

dt L(q(t), q̇(t), t). (4)

Now suppose that we fixed the coordinatesqn at the various timest0, t1, . . . , tN and then
choose the path connecting each pair of points (qn, qn+1) to be the true or dynamical path,
that is, a solution to the Euler–Lagrange equations of motion for those boundary conditions.
If this partially extremized path is denoted by0̃c then we may write

Aif [0̃c] =
N−1∑
n=0

Sn (5)
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whereSn ≡ S(qn+1, tn+1; qn, tn) is known as Hamilton’s principal function, being just the
integral of the Lagrangian along the true path fromqn at time tn to qn+1 at time tn+1.

We recall now that the canonical momentap(+)n ,p(−)n+1 at the endpointsqn, qn+1 may be
obtained from Hamilton’s principal function via the rule

p(−)n+1 ≡
∂

∂qn+1
Sn p(+)n ≡ −

∂

∂qn
Sn (6)

where the superscript(+) denotes that the momentum at the initial time,ti , carries
information forwards, whereas the superscript(−) denotes that the momentum at the final
time, tf , is influenced by earlier dynamics with respect to the temporal interval concerned.
At this stage the action sum (5) has not been extremized fully, as the intermediate points
qn, 0< n < N have been held fixed.

Now suppose we went further and extremized (5) fully by variation of the previously
fixed intermediate coordinatesqn, n = 1, 2, . . . , N − 1. Then we would find that

∂

∂qn
{Sn−1+ Sn}=

c
0 0< n < N. (7)

This equation may be understood as the condition that the canonical momentum along the
true path fromqi to qf is continuous, that is,p(+)n =

c
p(−)n . We notice immediately that (7)

has the same formal structure as Cadzow’s equation (3) provided we make the identification
Fn ↔ Sn.

Another interpretation of Cadzow’s equation is that it endows the action sum with the
additivity property of action integrals, which satisfy the relations∫ t1

t0

dt L+
∫ t2

t1

dt L =
∫ t2

t0

dt L t0 < t1 < t2. (8)

This property holds for all trajectories in continuous time mechanics, and not just for the
true or classical trajectory. In the case of system functions we may write

F(qn−1, qn)+ F(qn, qn+1)=
c
f (qn−1, qn+1) (9)

for some functionf of qn−1 and qn+1, because Cadzow’s equation (3) is equivalent to
the statement thatFn + Fn−1 is independent ofqn along dynamical trajectories. However,
unlike action integrals, this property will not hold off the true or classical trajectory in
general.

3. System functions from Lagrangians

Two important ideas emerge from the similarity between (3) and (7).
(i) Although the concept of velocity as a limit does not occur in discrete time mechanics,

we will define a unique discrete time momentum,pn, conjugate toqn by the rule

pn ≡ − ∂

∂qn
F n. (10)

This should be compared with the approach of Yamamotoet al [5] and Hashimotoet al [6]
and most other workers, where the momentum is defined as a derivative of a discretized
Lagrangian with respect to a difference. In our terms Cadzow’s equation reduces simply to
the statement that we may also calculate this momentum via the rule

pn ≡ ∂

∂qn
F n−1. (11)
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(ii) We will construct a system functionFn from the temporal integral fromtn to tn+1

of a continuous time Lagrangian, the question being which path to take. We cannot in
general consider using the true continuous time path, as this is meaningless in the context
of discrete time mechanics and normally not known to us. For the particularly important
case of the harmonic oscillator, however, we can evaluate Hamilton’s principal function
precisely and this provides us with an important check on our formalism. The path chosen
in the construction of the system function will be referred to as avirtual path.

It is possible to choose from a number of possible virtual paths, such as those inspired
by q-deformed mechanics [7]. This does not alter any of the principles we employ, it simply
changes the details of the system function used and hence the sort of invariants of motion we
can find. In this paper we are interested in treating time homogeneously, and so we choose
a temporal lattice with a constant fundamental time intervalT . Our proposed solution for
the virtual path in point particle mechanics is to take the geodesic or shortest geometric
path fromqn to qn+1, the metric normally being the Euclidean one in physical space (not in
coordinate space). This prescription will normally provide us with a unique system function
from a given Lagrangian. Moreover, it should be applicable to configuration spaces with
curvature and is a coordinate frame independent concept. It allows us to construct a gauge-
invariant discrete time prescription for electrodynamics, with a suitable modification. In
paper II of this series we shall show that we can also apply this prescription successfully to
field theories. There may be important cases where the chosen virtual path is not a linear
interpolation. This occurs for charged fields in the next paper in the series. In such cases,
additional requirements such as gauge invariance will influence the choice of virtual path.

To illustrate the procedure, consider a non-relativistic particle with position vectorx
and LagrangianL(x, ẋ, t). Then the virtual path̃xn taken betweenxn andxn+1 is given
by

x̃n = λxn+1+ λ̄xn (12)

where 06 λ 6 1 and λ̄ ≡ 1− λ. With this choice of virtual path the time derivative
becomes a difference operator. Specifically, we find

ṽn ≡ d

dt̃
x̃n = xn+1− xn

T
(13)

where we define

t̃n ≡ λtn+1+ λ̄tn = tn + λT . (14)

Then we construct the system function via the rule

Fn ≡ T
∫ 1

0
dλL(x̃n, ṽn, t̃n). (15)

The use of this integration does not imply that continuous time is regarded as being
meaningful in the context of discrete time mechanics. We are interested only in the results,
not in the means of obtaining these results. A useful analogy is with the use of classical
mechanics to set up quantum mechanical models. Once we have found our quantum theory,
we no longer need to regard the classical model which generated it as any more than some
approximation useful in some circumstances. Our prescription allows us to embed into our
system function fundamental properties such as gauge invariance and other symmetries of
importance to physics.

If the Lagrangian is a real analytic function of its arguments then we may make a Taylor
expansion aboutxn and integrate term by term. This will be valid for Lagrangians which
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are polynomial functions ofx andẋ. In such cases the system functionFn would be given
by the formal expression

Fn = T
∞∑
m=0

T m(Dn)
m

(m+ 1)!
L(xn,vn, tn) (16)

whereDn is the operatorvn · ∂
∂xn
+ ∂

∂tn
andvn andxn are considered independent at this

stage.
Some examples will illustrate the process. For a particle in one dimension with

Lagrangian

L = 1
2mẋ

2−
∞∑
r=0

Crx
r (17)

where theCr are constants, the system function is given formally by

Fn = m(xn+1− xn)2
2T

− T
∞∑
r=0

Cr(x
r+1
n+1 − xr+1

n )

(r + 1)(xn+1− xn) . (18)

For instance, the anharmonic oscillator Lagrangian

L = 1
2mẋ

2− 1
2mω

2x2− 1
4mλx

4 (19)

gives the system function

Fn = m(xn+1− xn)2
2T

− Tmω
2

6

(x3
n+1− x3

n)

(xn+1− xn) −
Tmλ

20

(x5
n+1− x5

n)

(xn+1− xn) . (20)

This differs from the anharmonic oscillator system function discussed in [10, 11], which
illustrates the general problem with discrete time mechanics. There may be many possible
discretizations of a given continuous time system, all of which lead back to the continuous
time theory when we take appropriate limits. The principle specified above gives us a
unique discretization (subject to choice of virtual path).

For the Coulombic potential problem in three spatial dimensions, the Lagrangian

L = m

2
ẋ · ẋ+ γ

|x| (21)

with virtual path(12) gives the system function

Fn = m(xn+1− xn)2
2T

+ γ T

|xn+1− xn| ln
{
xn+1 · (xn+1− xn)+ |xn+1||xn+1− xn|
xn · (xn+1− xn)+ |xn||xn+1− xn|

}
. (22)

This system function leads to Cadzow’s equations of motion which preserve the discrete
time analogue of orbital angular momentum. This system function is markedly different in
form to the original Coulombic Lagrangian (21) but if we consider trajectories for which
we may writexn ≡ rn, xn+1 ≡ rn + T vn +O(T 2) for eachn, then

lim
T→0

{
Fn

T

}
= 1

2
mvn · vn + γ

|rn| (23)

which corresponds with (21). However, it should be kept in mind that there will be many
discrete time trajectories for which this limit cannot be taken. For example, there may be
trajectories where the particle repeatedly flips between two fixed positions only. This may
happen with the discrete time harmonic oscillator, for example, and no limit such as the one
discussed above exists for such a trajectory. Discrete time mechanics is inherently richer
in its set of possible trajectories than continuous time mechanics.
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In general, Cadzow’s equations lead to an implicit equation forxn+1 involving xn and
xn−1, although for certain systems such as the harmonic oscillator discussed below we may
solve Cadzow’s equation to findxn+1 explicitly. The situation is analogous to what happens
in computer simulations of partial differential equations where not all equations givexn+1

explicitly. In such cases we must use numerical techniques to solve for thexn+1 in the
classical theory. It is a special feature of our approach that our equations of motion involve
only xn−1, xn, andxn+1, which is not always the case with finite difference schemes used
to approximate differential equations.

4. Invariants of motion

It is possible to find a discrete time analogue of Noether’s theorem in the case of continuous
symmetries along the lines considered by Maeda [3]. We shall refer to constants of
motion found by this theorem asMaeda–Noether invariants. Consider a system function
Fn ≡ F(qn, qn+1) which is invariant to some point transformationqn → q′n = qn + δqn.
Then we may write

0= δF n = ∂F n

∂qn
· δqn + ∂F n

∂qn+1
· δqn+1

=
c

∂F n

∂qn
· δqn − ∂F

n+1

∂qn+1
· δqn+1 (24)

using Cadzow’s equation of motion. From this we deduce that the quantityCn ≡ ∂Fn

∂qn
· δqn

will be conserved along dynamical trajectories, that is,

Cn=
c
Cn+1. (25)

This construction does not allow us to construct an analogue of the Hamiltonian in
the case of conserved systems because in our formulation we are not allowed to make
infinitesimal jumps in time.

Logan [2] gave a method for constructing constants of motion which are not necessarily
related to symmetries of the system function. Consider a point transformation

qn→ q′n = qn + εun (26)

whereε is infinitesimal andun is a function ofqn andqn+1. Then

δF n = ε
{
∂F n

∂qn
· un + ∂F n

∂qn+1
· un+1

}
=
c
ε
∂F n

∂qn
· un − ε ∂F

n+1

∂qn+1
· un+1 (27)

on the true trajectories. Now suppose that transformation (26) is such thatδF n can be
written in the formδF n = εvn+1 − εvn, wherevn = v(qn). Then we immediately deduce
that the quantity

Cn ≡ ∂F n

∂qn
· un + vn (28)

is conserved over the classical trajectories. Such a constant of motion will be referred to as
a Logan invariant.
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5. The discrete time harmonic oscillator

5.1. A Logan invariant for the harmonic oscillator

The discrete time harmonic oscillator in its generic form is given by the quadratic system
function

Fn = 1
2α(x

2
n + x2

n+1)− βxnxn+1 β 6= 0 (29)

which gives Cadzow’s equation of motion

xn+1=
c

2ηxn − xn−1 η = α

β
. (30)

A Logan invariant of motion is found to be

Cn ≡ 1
2β(x

2
n + x2

n+1)− αxnxn+1. (31)

5.2. Limiting behaviour

In this section we show how to solve the equation of motion (30) and determine the
behaviour of the oscillator as the discrete time tends to infinity. First we define the variables

a±n ≡ xn − µ±xn+1 (32)

which will become the analogues of annihilation and creation operators in quantum theory.
The constantsµ± are chosen to satisfy the condition

a±n =
c
µ±a±n−1 (33)

under the equation of motion (30), which implies

a±n =
c
(µ±)na±0 . (34)

Condition (33) gives

µ± = η ±
√
η2− 1. (35)

We note thatµ+µ− = 1. The Logan invariant (31) is given by

Cn = 1
2βa

+
n a
−
n (36)

which is a constant of motion by inspection and is a form of great value in discrete time
field theory.

The complete solution to the problem is now readily obtained and given by

xn=
c

[(µ+)n − (µ−)n]x1+ [(µ−)n−1− (µ+)n−1]x0

(µ+ − µ−) η2 6= 1. (37)

For the case whenη2 < 1 we writeη = cos(θ) and then we find

xn=
c

sin(nθ)x1− sin((n− 1)θ)x0

sin(θ)
(38)

whereas forη2 > 1 we writeη = cosh(χ) (assumingη > 1), and then

xn=
c

sinh(nχ)x1− sinh((n− 1)χ)x0

sinh(χ)
(39)

and similarly forη < −1. The crucial result is that bounded, elliptic behaviour occurs when
η2 < 1 whereas unbounded (hyperbolic) behaviour occurs whenη2 > 1. This result gives
a natural cut-off to particle momentum in field theory, as shown in paper II.
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The readily solved case whenη2 = 1 corresponds to the free particle and will be referred
to as theparabolic case. Whenη2 > 1 the system will be said to behyperbolicandelliptic
whenη2 < 1.

For the caseη2 < 1 it is useful to defineµ = η + i
√

1− η2 and

an ≡ µn[xn+1− µxn] a∗n ≡ µ−n[xn+1− µ−1xn] (40)

the advantage being that these are constants of motion, namely

an=
c
an−1 a∗n =

c
a∗n−1. (41)

These are useful when constructing particle states in quantum field theory because they
correspond to annihilation and creation operators in the Schrödinger picture.

5.3. The Newtonian oscillator

Using the methods outlined in section 3, the continuous time Lagrangian for the Newtonian
harmonic oscillator

L = 1
2mẋ

2− 1
2mω

2x2 (42)

gives the system function

Fn = m(xn+1− xn)2
2T

− Tmω
2

6
(x2
n+1+ xn+1xn + x2

n) (43)

which is equivalent to (29). The equation of motion is given by

(xn+1− 2xn + xn−1)

T 2
=
c
−ω2 (xn+1+ 4xn + xn−1)

6
(44)

which is equivalent to (30) with the identificationT 2ω2 = 6(1− η)/(2+ η), which means

η = 6− 2T 2ω2

6+ T 2ω2
. (45)

Using the results of the previous section, we deduce that elliptic behaviour occurs only
when the timeT satisfies the condition

0< Tω < 2
√

3. (46)

An equivalent result is found in particle field theory, giving a natural cut-off for particle
momentum.

5.4. Harmonic recurrence

We may understand the relationship between Hamilton’s principal function for the interval
[0, T ] and the system function by explicitly evaluating the former for the continuous time
harmonic oscillator Lagrangian (42). We find

Sn(T ) = mω

2 sin(ωT )
[(x2

n+1+ x2
n) cos(ωT )− 2xnxn+1] (47)

and comparing this with (43) we find

Sn(T ) = Fn +O(T 3). (48)

We expect a similar relation to exist in the general case, but different potentials will modify
the precise details.

There is an apparent problem with (47), whenever the time intervalT satisfies the
conditionωT = rπ , r = 1, 2, . . . because the denominator sin(ωT ) vanishes at such times.



Principles of discrete time mechanics: I. Particle systems 3125

This problem is an artefact of our representation ofSn, because the definition of the principal
function as a line integral over a finite contour of a bounded integrand means thatSn cannot
diverge. The resolution of this apparent paradox is that at therecurrence timesT = rπ/ω
the endpointsxn andxn+1 are no longer independent but are related by

xn+1 = (−1)rxn. (49)

The physical interpretation of recurrence is simple. The harmonic oscillator has a
fundamental periodP = 2π/ω, independent of the initial conditions.

An important construction for the harmonic oscillator are the variablesAn, A∗n defined
by

An ≡ ieinθ

sin(θ)
[xn+1− eiθxn]

A∗n ≡
−ie−inθ

sin(θ)
[xn+1− e−iθxn] θ ≡ ωT .

(50)

These are constants of motion, i.e.An=
c
An+1 and are independent ofT . This means that

recurrence must occur so as to cancel the zero of the denominator in (47) at the recurrence
times. To see what happens explicitly, we may invert equations (50) to find

xn = 1
2[einθA∗n + e−inθAn] xn+1 = 1

2[ei(n+1)θA∗n + e−i(n+1)θAn] (51)

so that at the recurrence timesT = rπ/ω we have

xn = (−1)nr

2
[A∗n + An] (52)

from which we deduce (49).
In terms ofAn andA∗n the principal function can be written as

Sn(T ) = −mω sin(θ)

4
[ei(2n+1)θA∗2n + e−i(2n+1)θA2

n] (53)

a form which shows clearly that the principal function is not singular. Moreover, we see
that at the recurrence times

Sn
( rπ
ω

)
= 0 r = 1, 2, . . . . (54)

It is a significant feature of the discrete time harmonic oscillator that it does not involve
recurrence phenomena in this particular way, as no apparent singularities occur in the system
function (43). This emphasizes that discrete time mechanics is not equivalent to continuous
time mechanics.

6. Electrodynamics: test particles

We now consider the case of electrically charged particles interacting with electromagnetic
fields. A more complete discussion of discrete time Maxwell’s equations is given in paper II
of this series. Here we discuss only the case of test particles which are affected by external
electric and magnetic fields but do not affect them. We shall find the Cadzow equation of
motion for such particles and show that in our prescription electric charge is conserved.

Consider a non-relativistic charged test particle of massm in external electromagnetic
potentials. The continuous time Lagrangian for such a system is given by

LEM = 1
2mẋ · ẋ+ qẋ ·A(x, t)− qφ(x, t) (55)
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where q is the charge of the particle. This Lagrangian is not gauge invariant but the
equations of motion are gauge invariant, because under the gauge transformation

φ→ φ′ ≡ φ + ∂tχ
A→ A′ ≡ A−∇χ (56)

the action integral transforms according to the rule

Aif → A′if ≡ Aif − [qχ ]
tf
ti (57)

that is, the change in the action integral occurs only at the endpoints. If this property is
preserved in any discretized version of electrodynamics then the equations of motion should
be gauge invariant. Our prescription for calculating the system function from the Lagrangian
does indeed preserve this property and therefore our discrete time equations of motion are
gauge invariant.

The first step is to construct discrete time electromagnetic potentials. These are discussed
in full detail in paper II, but the basic properties are the following. The magnetic vector
potential,A, differs from the scalar potential,φ, in that the former is defined at temporal
lattice sites whereas the latter is defined on the links between these sites. IfAn(x) is the
value of the vector potential at timen at positionx, andφn(x) is the scalar potential on the
link at positionx from timen to timen+1, then under a discrete time gauge transformation
we have

φ′n(x) = φn(x)+
χn+1(x)− χn(x)

T

A′n(x) = An(x)−∇χn(x)
(58)

whereχn(x) is the value of the gauge transformation function at timen and positionx.
The electric and magnetic fields are defined by

En(x) = −∇φn(x)− An+1(x)−An(x)

T

Bn(x) = ∇ ×An(x).
(59)

These are discrete time gauge invariant. By inspection the electric field is associated with
temporal links whereas the magnetic field is associated with temporal sites.

In order to apply our discretization prescription to (55) we specify the virtual paths
between timestn and tn+1 to be given by

x̃n ≡ λxn+1+ λ̄xn
Ãn(x̃n) ≡ λAn+1(x̃n)+ λ̄An(x̃n)

φ̃n(x̃n) ≡ φn(x̃n)
(60)

and then the system function is given by

Fn = m(xn+1− xn)2
2T

+ q(xn+1− xn) ·
∫ 1

0
dλ Ãn(x̃n)− T q

∫ 1

0
dλ φ̃n(x̃n). (61)

Under a gauge transformation we find

Fn′ = Fn + qχn(xn)− qχn+1(xn+1) (62)

and so the action sumAN ≡∑N−1
n=0 F

n changes according to the rule

AN ′ = AN + qχ0− qχN (63)

in agreement with (57). Therefore, we expect Cadzow’s equations of motion, obtained from
(61), to be gauge invariant.
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In general, the integrals over the external electromagnetic potentials in (61) give
complicated equations of motion and we will normally have only an implicit equation
for xn+1, which however will be gauge invariant. We find

m(xn+1− 2xn + xn−1)

T 2
=
c
q

∫ 1

0
dλ {λ̄En(x̃n)+ λEn−1(x̃n−1)}

+q (xn+1− xn)
T

∫ 1

0
dλ {λλ̄Bn+1(x̃n)+ λ̄2Bn(x̃n)}

+q (xn − xn−1)

T

∫ 1

0
dλ {λ2Bn(x̃n−1)+ λ̄λBn−1(x̃n−1)}. (64)

In the limit T → 0 we recover the usual Lorentz force law

mẍ=
c
qE + qẋ×B (65)

for those trajectories where the limit exists.
The charge density,ρn(x), and current density,jn(x), are defined by the following

functional derivatives with respect to the electromagnetic potentials of the action sum,AN :

ρn(x) ≡ −1

T

δ

δφn(x)
AN jn(x) ≡ 1

T

δ

δAn(x)
AN. (66)

We find

ρn(x) = q
∫ 1

0
dλ δ3(x̃n − x)

jn(x) = q (xn+1− xn)
T

∫ 1

0
dλ λ̄ δ3(x̃n − x)+ q (xn − xn−1)

T

∫ 1

0
dλ λδ3(x̃n−1− x)

(67)

which satisfy the discrete time analogue of the equation of continuity

ρn(x)− ρn−1(x)

T
+∇ · jn(x) = 0.

7. The Grassmannian oscillator

We may apply our methods to the Grassmannian oscillator system, which serves as a
prototype model for the Dirac equation studied in paper II. Our model consists of one
complex anticommuting degree of freedom,ψ , with equation of motion

iψ̇ =
c
ωψ iψ̇∗ =

c
−ωψ∗. (68)

The Lagrangian giving these equations is

L = 1
2iψ∗ψ̇ − 1

2iψ̇∗ψ − ωψ∗ψ. (69)

Equations (68) imply the harmonic oscillator equations of motion

d2

dt2
ψ =

c
−ω2ψ

d2

dt2
ψ∗ =

c
−ω2ψ∗. (70)

Now consider discretization using the linear virtual paths

ψ̃ = λψn+1+ λ̄ψn ψ̃∗ = λψ∗n+1+ λ̄ψ∗n . (71)

Using (69) we find that the system function is

Fn = 1
2i[ψ∗nψn+1− ψ∗n+1ψn] − ωT

{2ψ∗n+1ψn+1+ ψ∗nψn+1+ ψ∗n+1ψn + 2ψ∗nψn}
6

(72)
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which leads to the equation of motion

i
(ψn+1− ψn−1)

2T
=
c
ω
(ψn+1+ 4ψn + ψn−1)

6
(73)

and similarly for the complex conjugate. It does not seem possible to use (73) to obtain
the discretization (44) of the harmonic oscillator unless we change the virtual paths or
renormalize the frequencyω. However, we can readily show that (73) implies harmonic
oscillator behaviour by the following method.

First, rewrite (73) as

(−3i+ κ)ψn+1+ (3i+ κ)ψn−1=
c
−4κψn (74)

whereκ ≡ ωT . If we define

ν ≡ 3i+ κ√
9+ κ2

ν−1 ≡ −3i+ κ√
9+ κ2

(75)

and shift the degrees of freedom according to the rule

ψn ≡ νnφn (76)

then the variablesφn satisfy the discrete time oscillator equation

φn+1+ φn−1=
c

2ηφn (77)

whereη = −2κ√
9+κ2 . We find

µ ≡ η + i
√

1− η2 = −2κ + i
√

9− 3κ2

√
9+ κ2

(78)

from which we deduce the upper limitωT <
√

3 for elliptic behaviour in the system. This
is exactly one half of the upper limit found for the bosonic discrete time oscillator.

8. First quantization

We now discuss the possibility of quantizing our classical discrete time mechanics. If we
denote the process of quantization by the symbolQ and the process of discretization by the

symbolD then the question arises, do these processes commute, i.e. doesQD ?= DQ. In
other words, does it matter if we discretize the quantum theory of some system with classical
Lagrangian rather than quantize the discretized version of the same classical Lagrangian?

There isa priori no reason to expect these processes to commute. For one thing, we
have not yet decided whatQmight mean. Also, there are some aspects ofD such as the lack
of a Hamiltonian which makes a dynamical quantum theory of discrete time point particle
mechanics problematical. Fortunately, there are some concepts from the conventionalQ
programme which are useful and appear to surviveD. We shall comment on some of these
aspects now and then consider the harmonic oscillator quantization processQD in some
detail in the following sections, saving a discussion of theDQ process until paper II.

In the following we discuss a system consisting of a point particle in one dimension.
Generalization to more degrees of freedom is straightforward and we shall use the Dirac
bra–ket notation for convenience.
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8.1. Basics

In our approach to quantization, we shall follow all the standard principles of orthodox
quantum mechanics in the main. This means we face the same issues of rigour and
interpretation as orthodox quantum theory. We shall not comment on those in general. We
discuss below those aspects where discretization of time requires some additional emphasis
or comment.

Proposition 1.Physical states of a quantum system correspond one-to-one to rays in a
separable Hilbert space,H. A physical state vector|φ〉 will be in general normalized to
unity, namely

〈φ|φ〉 = 1. (79)

Proposition 2.For each integer timen (or more accurately, at each coordinate timenT ), H
is spanned by an improper basisBn ≡ {|x, n〉 : x ∈ <}, the elements of which satisfy the
relation

〈x, n|y, n〉 = δ(x − y). (80)

The resolution of the identity operator inH is

ÎH =
∫

dx |x, n〉〈x, n| (81)

which holds for eachn.
Given a physical state|ψ〉 in H we may write for eachn

|ψ〉 =
∫

dx ψn(x)|x, n〉 (82)

whereψn(x) is the wavefunction at timen, with the property that∫
dx |ψn(x)|2 = 1 (83)

assuming normalization to unity.

Remark 1.The Heisenberg picture is being used in the above. The time dependence of the
basis setsBn allows us to use the Schrödinger picture, discussed below.

Remark 2.All the usual principles of quantum mechanics concerning the interpretation of
the states in the Hilbert space apply here. For example, (a) the superposition principle and
its interpretation according to standard quantum mechanics holds and (b) given two physical
states|φ〉, |ψ〉 then the inner product〈φ|ψ〉 gives the conditional transition amplitude for
the system to be found in state|φ〉, given it is in state|ψ〉.
Definition 1. An operatorÂ, diagonal with respect toBn, is one which can be written in
the form

Â =
∫

dx |x, n〉A(x, ∂x)〈x, n| (84)

where the component operatorA(x, ∂x) is some differential operator of finite order.

The action of such an operator on a typical state|ψ〉 is given by

|Aψ〉 ≡ Â|ψ〉 =
∫

dx |x, n〉A(x, ∂x)ψn(x) (85)

with matrix elements given by

〈φ|Aψ〉 =
∫

dx φ∗(x)A(x, ∂x)ψn(x). (86)
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Remark 3.The wavefunctions of the theory are elements ofL2(<), the space of square
integrable functions on<, and the operators (including the observables of the theory) which
act on them are usually built up of functions ofx and∂x . If at a given time,n, the component
operator of some observable diagonal with respect toBn happens to be represented by say a
multiple of ∂x this carries no implication that the observable is related to a velocity (which
would normally be implied in conventional wave mechanics, where the momentum operator
is represented by−ih̄∂x). There is no concept of velocity in the normal sense in discrete
time mechanics.

Keeping in mind the caveats discussed in [12] concerning Hermitian and adjoint
operators, we define the Hermitian conjugate or adjoint operatorÂ+ to have the property
that

〈φ|Aψ〉 = 〈ψ |Â+φ〉∗ (87)

for a dense set of physical states. IfÂ is diagonal with respect toBn then assuming we
may represent̂A+ in the form

Â+ =
∫

dx |x, n〉Ã(x, ∂x)〈x, n| (88)

for some operator componentÃ(x, ∂x) we find∫
dx φ∗n(x)A(x, ∂x)ψn(x) =

∫
dx [Ã∗(x, ∂x)φ∗n(x)]ψn(x). (89)

Assuming that we are permitted to integrate by parts, which will be the case for normalizable
wavefunctions falling off at spatial infinity, we can readily understand the relationship
betweenA(x, ∂x) and Ã(x, ∂x). Given the former we can always work out the latter by
integration by parts and vice versa.

If A(x, ∂x) = Ã(x, ∂x) then Â = Â+ and the operator is self-adjoint. Physical
observables of the theory which are diagonal with respect toBn will be assumed to have
this property.

8.2. Dynamics

The dynamical content of the theory is expressed in terms of unitarytimestep operators,
Ûn, one for eachn.

Proposition 3.For eachn there is a unitary operator,̂Un, such that

|x, n+ 1〉 = Û †n |x, n〉. (90)

From this we deduce the relations

〈x, n+ 1| = 〈x, n|Ûn
|x, n〉 = Ûn|x, n+ 1〉
〈x, n| = 〈x, n+ 1|Û †n.

(91)

Remark 4.The operatorÛn provides an isometry betweenBn andBn+1, that is

〈x, n+ 1|y, n+ 1〉 = 〈x, n|y, n〉 = δ(x − y). (92)

Using the resolution of identity (81) we may represent the timestep operators in the
non-diagonal form

Ûn =
∫

dx |x, n〉〈x, n+ 1| Û †n =
∫

dx |x, n+ 1〉〈x, n|. (93)
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We are now in a position to define the fundamental functions of the quantum theory,
the system amplitudesUn(x, y), defined by

Un(x, y) ≡ 〈x, n+ 1|y, n〉 = 〈x, n|Ûn|y, n〉
U ∗n (x, y) ≡ 〈y, n|x, n+ 1〉 = 〈y, n|Û †n |x, n〉

(94)

from which we arrive at the non-diagonal expressions

Ûn =
∫

dx dy |x, n〉Un(x, y)〈y, n|

Û †n =
∫

dx dy |x, n〉U∗n (y, x)〈y, n|.
(95)

Remark 5.The system amplitudes will not be differential operators of finite order in general
but well behaved complex-valued functions of two real variables. Neither will they be
singular distributions. They are similar in function to integrated Feynman transition kernels
encountered in the path integral formulation of standard quantum mechanics.

The condition that the timestep operators are unitary, namely

ÛnÛ
†
n = ÎH (96)

leads to the closure condition∫
dy Un(x, y)U

∗
n (z, y) = δ(x − z) (97)

on the system amplitudes.

Definition 2. A system for which the system amplitudes are independent of time, such that
we may write

Un(x, y) = U(x, y) (98)

for someU(x, y) and for alln, will be said to beautonomous.

Definition 3. An autonomous system for which the system amplitudeU(x, y) carries the
symmetry

U(x, y) = U(y, x) (99)

will be said to betime-reversal invariant.

Remark 6.Most of the system amplitudes of interest to us will be autonomous and time-
reversal invariant. This will be so whenever we construct system amplitudes from system
functions which have been obtained from conventional time-translation invariant and time-
reversal invariant Lagrangians using the virtual path approach discussed above.

8.3. The Schr¨odinger picture

The Heisenberg picture description of the physical states used so far means that we may
write

|ψ〉 =
∫

dx ψn+1(x)|x, n+ 1〉 =
∫

dx ψn(x)|x, n〉 (100)

from which we deduce

ψn+1(x) =
∫

dy Un(x, y)ψn(y). (101)
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From this we see that the system amplitudes play a role analogous to finite time scattering
kernels in conventional quantum mechanics. Equation(101) is about the closest we come
in this theory to something analogous to a time-dependent Schrödinger wave equation.

We may set up a formal description in the Schrödinger picture as follows. Given a
Heisenberg picture state|ψ〉 and a knowledge of the component functionsψn(x), define the
sequence of states

|ψn,m〉 ≡
∫

dx ψn(x)|x,m〉 (102)

for some chosen timem. Then if |ψm,m〉 ≡ |ψ〉 we find

Ûm|ψm,m〉 = |ψm+1,m〉. (103)

It is straightforward to extend this to jumps over more than one time interval. This
establishes the Schrödinger picture in this theory.

8.4. Position eigenstates

Given an improper basisBn ≡ {|x, n〉 : x ∈ <} we may construct a self-adjoint position
operator

x̂n ≡
∫

dx |x, n〉x〈x, n| (104)

which has the property

x̂n|x, n〉 = x|x, n〉. (105)

Remark 7.For convenience we shall follow the traditional abuse of notation and use the
symbolx for both the position operator and a particular eigenvalue of that operator. It will
be clear normally from the context what is meant whenever a clash of notation occurs.

The position operators have the merit of being diagonal with respect to the appropriate
basis, that is,̂xn is diagonal with respect toBn. The position operators are not necessarily
diagonal with respect to bases at other values ofn. From the condition

x̂n+1 = Û †nx̂nÛn (106)

we find

x̂n+1 =
∫

dx dy dz |x, n〉U∗n (y, x)yUn(y, z)〈z, n| (107)

which is self-adjoint but not necessarily diagonal with respect toBn.

Remark 8.It is possible forx̂n+1 to reduce to diagonal form with respect to theBn basis
but this depends on the details of the system amplitudes.

From the above we arrive at the fundamental expression for the commutators:

[x̂n+1, x̂n] =
∫

dx dy dz |x, n〉U∗n (y, x)y(z − x)Un(y, z)〈z, n|. (108)
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8.5. Normal coordinate systems

In this section we discuss the quantization of a large family of systems for which the
following property holds.

Definition 4. Coordinates for a system for which the right-hand side of the commutator
(108) is a multiple of the identity operator for each value ofn will be callednormal.

Remark 9.We shall see below that the coordinates for the important system equivalent to
the harmonic oscillator are normal.

A class of system amplitudes for which the coordinates are normal may be constructed
from autonomous, time-reversal invariant system functions of the form

F(xn, xn+1) = −βxnxn+1+ 1
2W(xn)+ 1

2W(xn+1) (109)

whereβ is a non-zero constant. The Cadzow’s equation for this system is

xn+1=
c
β−1W ′(xn)− xn−1 (110)

which has the merit of givingxn+1 explicitly in terms ofxn andxn−1.
Now define the system amplitude to be given by

Un(x, y) = keiF(x,y)/h̄ (111)

wherek is some constant. Then from the unitarity condition (97) we find

|k|2 = β

2πh̄
. (112)

From (108) we find

[x̂n+1, x̂n] = −ih̄

β
(113)

so that the above coordinates for this system are normal. Moreover, with the momentum,
pn, conjugate toxn defined by (10), we recover the conventional commutator

[p̂n, x̂n] = −ih̄. (114)

This result is not expected to hold for systems which are not normal.
The operator equations of motion are found to be

x̂n+1 = β−1Ŵ ′n − x̂n−1 (115)

whereŴ ′ is the diagonal operator

Ŵ ′n ≡
∫

dx |x, n〉
{

dW(x)

dx

}
〈x, n|. (116)

From this we obtain the discrete time version of Ehrenfest’s theorem; i.e.

〈x̂n+1〉 = β−1〈Ŵ ′n〉 − 〈x̂n−1〉 (117)

for expectation values over a physical state.
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8.6. Compatible operators

In our theory the quantum dynamics is completely determined by the system amplitude.
Suppose now that the system is autonomous and time-reversal invariant. This means that
for each timen we may write

Un(x, y) = U(x, y) (118)

whereU(x, y) is independent ofn. For such a system there may be constants of motion
comparable with the Maeda–Noether and Logan invariants discussed in the classical theory.

Consider an operator,̂C, diagonal with respect toBn, namely

Ĉ ≡
∫

dx |x, n〉C(x, ∂x)〈x, n| (119)

where C(x, ∂x) is some differential operator of finite order. Matrix elements of the
commutator ofĈ with Û are given by

〈φ|[Ĉ, Û ]|ψ〉 =
∫

dx dy φ∗n(x){C(x, ∂x)U(x, y)− C̃∗(y, ∂y)U(x, y)}ψn(y) (120)

where|ψ〉 and |φ〉 are arbitrary physical states. From this we arrive at the following result

Theorem. A diagonal operator commutes with the timestep operator of an autonomous
system if

C(x, ∂x)U(x, y) = C̃∗(y, ∂y)U(x, y). (121)

Definition 5. A diagonal operator which commutes with the timestep operator of an
autonomous system will be said to becompatible(with the timestep operator).

Remark 10.It is not necessary for a diagonal operator,Ĉ, to be self-adjoint for it to be
compatible with the timestep operator.

Remark 11.From the above we deduce that compatible operators are invariants of motion.
To be explicit, consider a state|ψ〉 which is an eigenstate of the diagonal operator,Ĉ, with
eigenvaluec, i.e.

Ĉ|ψ〉 = c|ψ〉. (122)

Then we can show

C(x, ∂x)ψn(x) = cψn(x) (123)

and

C(x, ∂x)ψn+1(x) = cψn+1(x). (124)

Remark 12.Given the system amplitudeU(x, y) it may be very hard or perhaps even
impossible to find any compatible operators in closed form. It may be necessary to
approximate such an operator via a perturbative expansion, for example. This is the quantum
theory analogue of the problem of finding invariants of motion for a classical discrete time
theory given some system function.

Remark 13.Discrete time and continuous time quantum mechanics pose dual problems
in the following sense. In continuous time quantum mechanics we are normally given
a Hamiltonian and the problem is to construct the time evolution operator. For a time-
independent Hamiltonian a complete solution would require us to find all the eigenvalues
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Eα and eigenstates|Eα〉 of Ĥ and then use them in the formal solutionÛt = exp{−iĤ t/h̄}
to write

Ût =
∑
α

|Eα〉e−iEαt/h̄〈Eα|. (125)

This is, in general, a formidable problem. In discrete time quantum mechanics the situation
is the other way around. Given a system amplitude, the problem is to find the compatible
operators, if any. An important system where answers can be found to all of these questions
in both approaches is the discrete time harmonic oscillator discussed in section 10.

9. Stroboscopic construction

In principle it should always be possible to construct examples of discrete time quantum
systems by integrating the equation

ih̄∂t Û (t) = Ĥ Û(t) (126)

for the evolution operatorÛ (t) in continuous time quantum mechanics, given the
HamiltonianĤ . The boundary condition

lim
t→0

Û (t) = ÎH (127)

ensures a unique solution. From this point of view the discussion outlined above represents
a stroboscopic approach, where the state vectors evolve continuously but are looked at
periodically in a non-destructive (mathematical) sense. This examination of the state vector
is not the same as an observation collapsing the wavefunction.

For autonomous systems a formal solution to (126) is

Û (t) ≡ exp(−iĤ t/h̄). (128)

In this approach the transition amplitudeU(x, y; t) ≡ 〈x, t |y, 0〉 corresponds to our system
amplitude whent = T and may be evaluated in a number of ways. For example, the
Feynman path integral method gives the formula

〈x, t |y, 0〉 ∼
∫

[dz] exp

{
i

h̄

∫ t

0
dt ′ L(ż, z, t ′)

}
t > 0 (129)

whereL is the Lagrangian, such amplitudes being functions oft and the endpointsx andy.
The standard approach to the evaluation of such integrals is, rather interestingly, based on
the discretization of time. The time interval [0, t ] is partitioned into a finite numberN of
equal steps, the integrand in the exponential is approximated suitably (by what amounts to
choosing a virtual path in our approach), theN integrals are evaluated, and then the limit
N →∞ taken.

The relationship between this approach and our discrete time formalism should now be
clear, the basic difference being that we do not take the limitN → ∞. In a number of
situations our system amplitude will actually take the form

U(x, y) ≡ 〈x, T |y, 0〉 ∼ exp{iF(x, y)/h̄} (130)

and then forN timesteps the transition amplitude〈x,NT |y, 0〉 becomes

〈x,NT |y, 0〉 ∼
∫
. . .

∫
dx1 dx2 . . .dxN−1 exp{iAN/h̄} (131)

which emphasizes the relationship further.
An important point which could be confusing is that the system function in (130) does

not correspond to a Logan constant for those systems such as the harmonic oscillator where
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such an invariant can be found. System functions in general are not expected to be invariants
of motion.

An alternative method of constructing the transition amplitudes is to find the Green’s
functions for the system. If the transition amplitudeU(x, y; t) satisfies the homogeneous
Schr̈odinger equation

(ih̄∂t −−→Hx)U(x, y, t) = 0 (132)

with the boundary condition

lim
t→0

U(x, y, t) = δ3(x) (133)

then the retarded and advanced Green’s functionsGR(x, y, t) andGA(x, y, t) are related
to the transition amplitude by

GR(x, y, t) = θ(t)U(x, y, t)
GA(x, y, t) = −θ(−t)U(x, y, t)

(134)

and these satisfy the inhomogeneous equation

(ih̄∂t −−→Hx)G(x, y, t) = ih̄δ(t)δ3(x). (135)

If we can solve this equation, we can immediately construct the transition amplitude using
the relation

U(x, y, t) = GR(x, y, t)−GA(x, y, t). (136)

9.1. Example: the free Newtonian particle

Given the Hamiltonian

H = p · p
2m

(137)

in continuous time mechanics we can readily find the Green’s functions in the quantum
theory. We find

GR(x,y, t) = θ(t)
( −im

2πh̄t

)3/2

exp

{
i

h̄

m(x− y) · (x− y)
2t

}
GA(x,y, t) = −θ(−t)

( −im

2πh̄t

)3/2

exp

{
i

h̄

m(x− y) · (x− y)
2t

} (138)

from which we construct the transition amplitude

U(x,y,t) =
( −im

2πh̄t

)3/2

exp

{
i

h̄

m(x− y) · (x− y)
2t

}
t > 0. (139)

This satisfies the closure condition (97)∫
d3yU(x,y; T )U∗(z,y; T ) = δ3(x− z) (140)

for a system amplitude and demonstrates the essential point that it is possible to construct
examples of discrete time quantum mechanics from continuous time quantum mechanics.
The converse need not be true. Given a system amplitude, it may be impossible to find a
compatible operator equivalent to some second-order Hamiltonian operator in continuous
time mechanics. It is not difficult to find examples of normal systems where this occurs.
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10. The discrete time harmonic oscillator

Given the discrete time harmonic oscillator system function

Fn ≡ F(xn+1, xn) = 1
2α(x

2
n+1+ x2

n)− βxn+1xn (141)

we note that it is an example of a normal system. This leads us to define the system
amplitude to be

Un(x, y) = k exp(iF(x, y)/h̄)

= k exp

(
i

2h̄
[αx2+ αy2− 2βxy]

)
(142)

wherek is some constant. From the unitarity condition (97) we find (112) and from (108)
we find (113), so we see that the above system’s coordinates are indeed normal. The
self-adjoint diagonal operator with operator component

−→
Cx ≡ 1

2β
−1[−h̄2∂2

x + (β2− α2)x2] (143)

is compatible with the system amplitude (142).

The interpretation of this is that
−→
Cx is the operator corresponding to the Logan constant

for the classical discrete time harmonic oscillator

C = 1
2β(x

2+ y2)− αxy. (144)

To see this explicitly, consider the operatorsx̂nand x̂n+1. The Logan constant for the
harmonic oscillator is quantized according to the standard rule

Ĉ = 1
2β(x̂nx̂n + x̂n+1x̂n+1)− 1

2α(x̂nx̂n+1+ x̂n+1x̂n). (145)

A suitable coordinate representation of these operators with respect to the basisBn is

x̂n→ x x̂n+1→ ηx − i
h̄

β
∂x (146)

and then operator (145) is represented by (143).
We see from the potential term in the differential operator (143) that a complete set

of physical states can be found as eigenstates of the operator providedβ2 > α2. This
corresponds precisely to the elliptic region discussed in the classical theory.

If the constants satisfy the elliptic condition, we may construct annihilation and creation
operators for the system. These are diagonal with respect to any of the basesBn and are
given by

ân ≡ ieinθ [x̂n+1− eiθ x̂n] = einθ
∫

dx |x, n〉
{√

1− η2x + h̄
β
∂x

}
〈x, n|

â+n ≡ −ie−inθ [x̂n+1− e−iθ x̂n] = e−inθ
∫

dx |x, n〉
{√

1− η2x − h̄
β
∂x

}
〈x, n|.

(147)

These operators satisfy the commutation relation

[ân, â
+
n ] = 2h̄

√
1− η2

β
. (148)

Using the evolution relation (106) and the operator equation of motion

x̂n+1 = 2ηx̂n − x̂n−1 (149)

we find

ân+1 = ân (150)



3138 G Jaroszkiewicz and K Norton

but this does not mean that this operator is conserved. A conserved operator, according to
our definition, must be compatible with the timestep operatorÛn. We find that the creation
and annihilation operators satisfy the relations

Ûnân − eiθ ânÛn = 0

Ûnâ
+
n − e−iθ â+n Ûn = 0

(151)

which is reminiscent of various deformed commutators encountered in quantum mechanics.
However, operator (145) corresponding to the Logan constantCn = 1

2βa
∗
nan is compatible

with the timestep operator and is therefore an invariant of motion. We find

Ĉ = 1
4β{â+â + ââ+} = 1

2βâ
+â + 1

2

√
1− η2h̄

=
∫

dx |x, n〉
{−h̄2

2β

∂2

∂x2
+ 1

2
β(1− η2)x2

}
〈x, n|

=
∫

dx |x, n〉−→Cx 〈x, n|. (152)

This Logan invariant is a close analogue of the oscillator Hamiltonian in continuous time
mechanics and the eigenstates of the former follow the same pattern as the eigenstates of
the latter. For example, there is a ground state|90〉 satisfying the relation

ân|90〉 = 0 (153)

with normalizable wavefunction90(x) = 90(0) exp{− 1
2β
√

1− η2x2/h̄}. This
wavefunction is also an eigenstate of the Logan invariant operator, with

−→
C 90(x) = 1

2

√
1− η2h̄90(x). (154)

These results hold only for|η| < 1. We note from section 5.3 thatβ = m(6+T 2ω2)/6T
and that

lim
T→0

−→
C

T
= − h̄

2

2m
∂2
x +

1

2
mω2 (155)

when we identify our system with the Newtonian oscillator.

11. The inhomogeneous oscillator

In this section we discuss the inhomogeneous harmonic oscillator, which serves as a
prototype for the application of our quantization principles to field theories. We will use
the source functional techniques of Schwinger to obtain the ground-state functional and
various n-point functions of interest. Because the Schwinger method deals with time-
ordered products we should expect the discretization of the time parameter to involve some
changes in the details of the calculations.

First, given a system functionFn ≡ F(xn, xn+1) we are free to introduce an external
source in any convenient way, as ultimately this will be set to zero. Our choice is to define
the system functionFn[j ] in the presence of the external source as

Fn[j ] ≡ Fn + 1
2Tjn+1xn+1+ 1

2Tjnxn (156)

a choice which allows the construction of time-ordered product expectation values directly.
The action sum from timeMT to timeNT (N > M) now becomes

ANM [j ] = ANM + 1
2TjMxM + 1

2TjNxN + T
N−1∑

n=M+1

jnxn M < N (157)
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from which Cadzow’s equation of motion is found to be

∂

∂xn
{Fn + Fn−1} + jn=

c
0 M < n < N. (158)

Quantization is introduced via the Schwinger action principle modified for discrete time.
We postulate that for an infinitesimal variationδÂNM [j ] of the action operator then

δ〈φ,N |ψ,M〉j = i

h̄
〈φ,N |δÂNM [j ]|ψ,M〉j M < N (159)

for any states|φ,N〉, |ψ,M〉 at timesNT , MT respectively, with evolution in the presence
of the source. Independent variation of thejn for M 6 n 6 N then leads to the equations

−ih̄

T

∂

∂jM
〈φ,N |ψ,M〉j = 1

2〈φ,N |x̂M |ψ,M〉j

−ih̄

T

∂

∂jn
〈φ,N |ψ,M〉j = 〈φ,N |x̂n|ψ,M〉j M < n < N

−ih̄

T

∂

∂jN
〈φ,N |ψ,M〉j = 1

2〈φ,N |x̂N |ψ,M〉j .

(160)

Further application of the principle leads to expectation values of time-ordered product of
operators, such as(−ih̄

T

)2
∂2

∂jm∂jn
〈φ,N |ψ,M〉j = 〈φ,N |T̃ x̂mx̂n|ψ,M〉j M < m, n < N (161)

where the symbol̃T denotes discrete time ordering. For example,

T̃ x̂mx̂n = (2m−n + 1
2δm−n)x̂mx̂n + (2n−m + 1

2δm−n)x̂nx̂m
= 2m−nx̂mx̂n + δm−nx̂nx̂n +2n−mx̂nx̂m (162)

where2n is the discrete step function, defined by

2n = +1 n > 0

= 0 n 6 0 (163)

andδn is the Kronecker delta, defined by

δn = +1 n = 0

= 0 n 6= 0. (164)

Given the harmonic oscillator system function

Fn = m(xn+1− xn)2
2T

− Tmω
2

6
(x2
n+1+ xn+1xn + x2

n). (165)

the classical discrete time harmonic oscillator in the presence of the external sourcejn
satisfies the equation

xn+1=
c

2ηxn − xn−1+ T
β
jn (166)

whereη = α/β with

α = m(1− 2T 2ω2)

6T
β = m(6+ T 2ω2)

6T
. (167)

As discussed previously, elliptic (oscillatory) solutions occur forη2 < 1 whereas hyperbolic
solutions occur forη2 > 1. We will now discuss these possibilities individually.
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11.1. The elliptic regime

The importance of the elliptic regimeη2 < 1 stems from the fact that in field theory this
corresponds to physical particle configurations of the fields, i.e. solutions which can be
normalized.

Now define the action of the (classical) discrete time displacement operator, Un, by the
rule

Unfn ≡ fn+1 (168)

for any function of the indexn, wheren is real. Then (166) may be written in the form

(Un − 2η + U−1
n )xn=

c

T

β
jn. (169)

To solve (166) for the elliptic case we first define the following: sinceη2 < 1 we write
c ≡ cos(θ) = η and s ≡ sin(θ) = +

√
1− η2 > 0, taking 0< θ < π . If we define

sa ≡ sin(aθ) wherea is real then a useful identity is

sasb−c + sbsc−a + scsa−b = 0. (170)

From this we deduce

sa+1+ sa−1 = 2csa (171)

which is equivalent to

(Ua − 2η + U−1
a )sa = 0. (172)

We define the matrices

3n = 1

s

[
s1+n −sn
sn s1−n

]
3 ≡ 31 (173)

and use (170) to prove

3a3b = 3a+b. (174)

If we write

Xn ≡
[
xn+1

xn

]
Jn ≡

[
T
β
jn
0

]
(175)

then (166) may be written in the form

Xn = 3Xn−1+ Jn. (176)

This equation may be readily solved using the properties of thesa functions and by
diagonalizing the matrix3. We choose Feynman boundary conditions, specifying the
particle to be at positionxM in the past (at timeMT ) and at positionxN in the future
(at timeNT ), giving

ssN−Mxn=
c
ssN−nxM + ssn−MxN

+T
β

{ n−1∑
m=M

sN−nsM−mjm + sN−nsM−njn +
N∑

m=1+n
sM−nsN−mjm

}
(177)

which is valid only forM < n < N . This can be tidied up into the form

xn = sN−nxM
sN−M

+ sM−nxN
sM−N

− T
N∑

m=M
Gnm
NMjm (178)
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where

Gnm
NM = −

sN−nsM−m
βss

N−M
M 6 m < n < N

= − sN−nsM−m
βss

N−M
M < m = n < N

= − sM−nsN−m
βssN−M

M < n < m 6 N. (179)

ThenGnm
NM satisfies the inhomogeneous equation

β(Un − 2η + U−1
n )Gnm

NM = −δn−m M < n < N. (180)

Up to this stage we have takenN > M with both finite, but normally we will be
interested in the scattering limitN → +∞, M → −∞. Also, we have appeared to have
overlooked the possibility thatsN−M vanishes in the denominator of the propagator (179)
for some values ofN andM. We shall now address both of these issues directly.

Our method of avoiding possible singularities is to extend the Feynman−iε prescription
to theθ parameter. By inspection of the equation

η ≡ cos(θ) = 6− 2T 2ω2

6+ T 2ω2
(181)

we deduce that

ω2→ ω2− iε ⇒ θ → θ − iε η→ η + iε. (182)

With this deformation of theθ parameter and taking the limitN → +∞, M → −∞, we
find

xn = x̃n − T
∞∑

m=−∞
Gn−m
F jm (183)

wherex̃n satisfies the homogeneous equation

(Un − 2η + U−1
n )x̃n = 0 (184)

and

Gn−m
F = 1

2β is
(ei(m−n)θ2n−m + δm−n + ei(n−m)θ2m−n). (185)

This is the discrete time analogue of the harmonic oscillator Feynman propagator and reduces
to it in the limit T → 0, nT → t . A direct application of the discrete time Schwinger
action principle to the operator equation of motion

(Un − 2η + U−1
n )x̂n = T

β
jn (186)

then gives the ground state vacuum functional

Z[j ] = Z[0] exp

{−iT 2

2h̄

∞∑
n,m=−∞

jnG
n−m
F jm

}
(187)

essentially solving the quantum problem. Using this result and (160) we find that in the
limit j → 0

〈0|x̂nx̂n|0〉 = h̄

2βs
〈0|x̂n+1x̂n|0〉 = h̄

2βs
e−iθ . (188)
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From this we deduce

〈0|[x̂n+1, x̂n]|0〉 = −ih̄

β
(189)

which agrees exactly with the discrete time oscillator commutation relation

[x̂n+1, x̂n] = −ih̄

β
(190)

found previously.
Further ground-state expectation values of commutators may be obtained by using the

result

〈0|T̃ x̂mx̂n|0〉 = ih̄Gn−m
F = h̄

2β sinθ
e−i|n−m|θ . (191)

For example, we find

〈0|[x̂n+2, x̂n]|0〉 = −2ih̄η

β
(192)

which agrees with the commutator

[x̂n+2, x̂n] = −2ih̄η

β
(193)

obtained from the operator equation of motion (149) and the commutator (190).
Another verification of the consistency of our methods is that we may use (188) directly

to find the ground-state expectation value of the Logan invariant (145) for the discrete time
harmonic oscillator. We find

〈0|Ĉn|0〉 = 1
2h̄
√

1− η2 (194)

which agrees exactly with previous results.

11.2. The hyperbolic regime

BecauseT ω is real and positive the controlling parameter,η, as given by (181) takes values
only in the regions

elliptic: − 1< η < 1: 0< Tω < 2
√

3

parabolic: η = −1: T ω = 2
√

3

hyperbolic: −∞ < η < −1: 2
√

3< Tω.

(195)

If we parametrizeη by the ruleη = cos(z) wherez is complex then if we take

η = cosθ : 0< Tω < 2
√

3

η = − coshλ: 2
√

3< Tω
(196)

then the range of possibilities (195) corresponds to a contour,0, in the complexz = θ − iλ
plane which runs just below the real axis from the origin toπ and then runs fromπ to
π − i∞. The elliptic regime corresponds to values ofz on the first part of the contour, for
which λ = 0+ ε, whereε is infinitesimal and positive, corresponding to the Feynman−iε
prescription.

The hyperbolic region corresponds to the part of the contour given byz = π−iλ, : λ > 0.
For this region analytic continuation of thesn functions leads to

sn→ i(−1)n+1s̃n (197)
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where s̃n ≡ sinh(nλ). From this the analytic continuation of the finite interval propagator
(179) gives

G̃nm
NM ≡

−(−)n−m
βs̃s̃N−M

{s̃N−ns̃M−m2n−m + s̃N−ms̃M−mδn−m +2m−ns̃M−ns̃N−m}
M < n, m < N (198)

which satisfies the equation

β{Un − 2η + U−1
n }G̃nm

NM = −δn−m. (199)

Taking the limitN = −M →∞ gives the infinite interval propagator

G̃n−m
F ≡ (−)1+n−m

2βs̃
{e(m−n)λ2n−m + δn−m + e(n−m)λ2m−n} (200)

which satisfies the equation

β{Un − 2η + U−1
n }G̃n−m

F = −δn−m. (201)

11.3. Comment

The elliptic and hyperbolic Feynman boundary condition propagators can be summarized
in the analytic form

1n
F (η) =

T (2+ cosz)

6mi sinz
e−i|n|z

= T (2+ cosz)

6mi sinz
(e−inz2n + δn + einz2−n) (202)

whereη = cosz and z lies somewhere on the contour0 discussed above. Then1n
F (η)

satisfies the equation

β{Un − 2η + U−1
n }1n

F (η) = −δn. (203)

However, physical states correspond only to points in the elliptic regime, as the
wavefunctions will not remain normalizable in time otherwise. For example, we have
previously shown that the ground-state wavefunction for the discrete time oscillator in the
elliptic regime is given by

90(x) = 90(0) exp
(
− 1

2β
√

1− η2x2/h̄
)

(204)

demonstrating that analytic continuation to the hyperbolic regime will not give a
normalizable ground-state wavefunction.

12. Concluding remarks

In this paper we have shown that a consistent approach to the discretization of time results
in a consistent dynamical framework. Once the initial psychological hurdle of accepting
a dynamics without time derivatives has been jumped, then such a theory becomes as
reasonable as continuous time dynamics. Indeed, by taking the fundamental time interval,
T , small enough, it would appear possible to duplicate or approximate conventional theory
as closely as required. The obvious question,why consider discrete time mechanics at all?
has two answers. First, it may be the case after all that there is some fundamental limit to
time intervals, and so it becomes a matter of curiosity as to how far we can go along that
road. Secondly, there may be some novel properties in this approach which could prevent or
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alleviate the notorious problems with divergences which plague conventional field theories.
It is worth considering any approach to the regularization in field theory which is based
on just one assumption, namely that of a discrete time. The behaviour of the discrete time
oscillator holds the promise of potentially useful properties which may provide a cut-off for
particle energy.

In the next paper we apply our methods to classical field theories. However, no
divergence problems appear at that stage. In the third paper of this series, we shall
consider second quantization, and issues concerning divergences of Feynman diagrams will
be discussed in subsequent papers in some detail.
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