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Abstract. We discuss the principles to be used in the construction of discrete time classical
and quantum mechanics as applied to point particle systems. In the classical theory this includes
the concept of virtual path and the construction of system functions from classical Lagrangians,
Cadzow’s variational principle applied to the action sum, Maeda—Noether and Logan invariants
of motion, elliptic and hyperbolic harmonic oscillator behaviour, gauge invariant electrodynamics
and charge conservation, and the Grassmannian oscillator. First quantized discrete time
mechanics is discussed via the concept of system amplitude, which permits the construction of
all quantities of interest such as commutators and scattering amplitudes. We discuss stroboscopic
quantum mechanics, or the construction of discrete time quantum theory from continuous time
quantum theory and show how this works in detail for the free Newtonian particle. We conclude
by applying the Schwinger action principle to the important case of the quantized discrete time
inhomogeneous oscillator.

1. Introduction

There are various circumstances in mechanics where it is convenient or necessary to replace
the continuous time (temporal evolution) parameter with a discrete parameter. Computer
simulation of waves is an example where the configuration of a system atr timg is
calculated from a knowledge of its configuration at timeand: — 7. There have been
various attempts to construct classical and quantum mechanical theories based on this notion,
such as the work of Cadzow [1], Logan [2], Maeda [3] and Lee [4]. The work of Yamamoto

et al [5], Hashimotoet al [6] and Klimek [7] indicates that the subject continues to receive
attention.

This paper considers the question: by which principles if any should continuous
time mechanical theories be discretized, that is, turned into discrete time analogues? By
discretization we do not mean the numerical approximation of continuous time mechanics
such as the work of Bendest al [8]. Neither do we discretize space or the dynamical
degrees of freedom. Our attention is fixed solely on replacing a continuous dynamical
evolution parameter with a discrete parameter. In this and the following paper, paper I
on discrete time classical field theory [9], our interest is in the construction of exact, self-
consistent discrete time mechanics with well specified principles, equations of motion and
predictions. This is motivated by the notion that at some unimaginably small scale, time
is really discrete. This has echoes in modern theories such as string theory and quantum
gravity, where the Planck time of 1¢? seconds sets a scale at which conventional notions
of space and time break down.

It could be argued that relativity requires a symmetrical treatment between time and
space but this leads to the situation of a spacetime lattice approach which has lost all
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relativistic symmetries and rotational invariance. We argue that relativity does distinguish
between timelike and spacelike, and by discretizing only time our approach reduces the
break with relativity to a minimum. Lorentz covariance is broken in our approach to field
theories, discussed in paper Il, but the residual Euclidean invariances permit the construct
of particle-like states.

It may be felt objectionable that there is no natural concept of velocity in discrete
time mechanics. It could be argued that this lack destroys our intuitive feeling for dynamics
based on the notion of (say) a particle system evolving from an initial position and an initial
velocity. The correct way to see the situation is in terms of real numbers. In continuous
time mechanics, we normally consider a particle as having an instantaneous position and
an instantaneous velocity (we exclude Brownian particle dynamics from our definition of
continuous time mechanics). This information requires two real numbers for every degree of
freedom. In discrete time mechanics, there is no natural concept of simultaneity analogous
to this. What we mean by a ‘particle’ is something with a position at tiraed a position
at timer — T, which also requires two real numbers for every degree of freedom. A
particle here is more properly associated with limk between two successive points in
discrete time, rather than those times separately. So ultimately, the only major difference
in principle between continuous time and discrete time mechanics is the lack of the limit
processT — 0.

One problem with discrete time mechanics is a lack of guiding principles at key places,
which our series of papers attempts to address. For example, consider the discretization of
a system with Lagrangiah = %mxz — V(x). The approach taken by most authors would
be to replace the temporal derivatives by differences, symmetrize the potential in some way,
derive the analogue of the Euler—Lagrange equation, and finally evolve the system according
to the resulting difference equation. Quantities such as the en}éﬁgy%mfchr V (x) which
are conserved in continuous time mechanics would be monitored by calculating the value
Ep of the discretized Hamiltonian.

It is more than likely however that a naive discretization of the Hamiltonian would
result in an expressiolt’, which is not exactly conserved. This has been discovered by
many authors. It is a particular merit of Lee’s approach [4] that an invariant analogous to
the energy drops out of the formalism, but only at the expense of a dynamically evolving
discrete time interval.

It is somewhat surprising therefore that a computer simulation based on the above
principles should be judged as good or bad according to how conBtarmemains. In
the absence of any proper principle for the construction of invariants of motion it should
come as no surprise to find that occasionally a quantity sucfi;awill vary enormously
and unpredictably during the course of a simulation. This happens because there are
actually three systems being confused; (1) the original continuous time theory, (2) a discrete
time system evolving exactly according to some well defined discretized Euler—Lagrange
equation, and (3) some unknown discrete time system for which the naively discretized
energy,E’,, would be an exact constant of the motion, but only for evolution under its own
discretized equation of motion, which could be very different to the equation of motion
for (2). On top of this there may be numerical uncertainties induced by the computer
algorithms used. Seen in this light, it would seem a wise policy to discretize according to
definite principles which would establish conserved quantities rigorously. The construction
of invariants of motion therefore becomes one of the principal objectives of discrete time
mechanics.

An important first step in the process of constructing rigorous discrete time mechanics
was the introduction of a discrete time action principle. This was done by Cadzow [1],
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giving a discrete time analogue of the Euler-Lagrange equation. We shall call such an
equation aCadzow’s equatiorior the system. The construction of constants of motion was

considered by Maeda [3] in the case of continuous symmetries, whilst the construction of
constants of motion analogous to the energy had previously been considered by Logan [2].

Various features found in continuous time mechanics have discrete time analogues,
including Noether's theorem, whilst certain other features either do not or cannot have
discrete time analogues. A particular problem arises, for example, with Hamiltonian
evolution and equations of motion derived using Poisson brackets. Not only is there no
possibility here of an infinitesimal translation in time (which thereby renders the notion of
a Hamiltonian problematic) but there is no natural concept of velocity as a limit either.
This makes the standard definition of conjugate momentum as the partial derivative of the
Lagrangian with respect to a velocity just as problematic. This has not prevented a number
of authors from constructing discrete time analogues of Poisson brackets, however, with
various degrees of success and utility, usually with the observation that the generator of
time translations is not conserved.

A feature of our approach is that we have found a clear principle for the definition
of conjugate momentum in discrete time mechanics. It turnsnottto be the partial
derivative of the ‘Lagrangian’ with respect to a difference in general, but does reduce to it
in various important cases. In addition, we have avoided trying to construct Hamiltonians
and equations of motion derived via Poisson brackets. In our formalism the Hamiltonian is
displaced by a Logan invariant, if such a quantity can be found. Fortunately such an object
does exist for the important case of the harmonic oscillator, which has ramifications in the
discrete time field theory discussed in the next paper in this series.

The overall plan for this and subsequent papers is as follows. In this paper (paper I) we
restrict our attention to classical and quantum point particle dynamics, reserving classical
field theory to paper Il, quantum field theory to paper Ill, and quantum electrodynamics to
paper V.

Topics covered in paper | are as follows. First we introduce the central concept of
system functionThis replaces the Lagrangian as the key to the dynamics. With the system
function we can calculate equations of motion, construct invariants of the motion, and
guantize the system. We give a prescription for constructing the system function from
a given Lagrangian. We may use this prescription to embed symmetries into the system
function such as gauge invariance and hence construct electrodynamics. Then we discuss
the construction of invariants based on the work of Maeda, Noether, and Logan, and apply
it to the harmonic oscillator, which we discuss in detail. This key system lies at the heart
of particle field theory, discussed in the following papers, and it displays some important
properties, such as a natural cut-off for particle energy, for example. We also discuss patrticle
electrodynamics and the Grassmannian oscillator.

A major part of our programme is to develop discrete time quantum mechanics and
so we conclude our paper with a discussion of the principles for first quantization. This
includes the concept of system amplitude, the construction of unequal-time commutators,
and compatible operators. We then discuss the construction of discrete time quantum
mechanics from standard quantum mechanics via a stroboscopic approach and give an
explicit example. Finally, we apply the Schwinger action principle to the discrete time
inhomogeneous harmonic oscillator to construct the Feynman propagator for the oscillator,
in anticipation of its use in field theory.
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2. Action integrals and action sums

In continuous time mechanics Lagrangian dynamics is conventionally formulated via an
action principle based on the action integral

Iy
AUWL=/ o Liq. q.1) )

where; and¢s are the initial and final times respectively along some given pathin
our version of discrete time mechanics we postulate that the dynamical varigb)esre
observed or sampled at a finite number of timgs: = 0,1,..., N, wherery = 1, and
ty = ty, such that the intervalg1 — 1, are all equal to some fundamental interZal For
convenience we will writey, = q(1,).

It is possible to develop a theory where the time intervals vary dynamically along the
path. Such a mechanics was considered by Lee [4]. The extension of our methods to that
particular situation is left for a further article.

In our formulation of discrete time mechanics we replace the action integral (1) by an
action sum of the form

N-1

AN =) F" )

n=0
where F" = F(q,, q,+1, n) Will be referred to as theystem functionThe system function
has the same central role in discrete time mechanics as the Lagrangian has in continuous time
mechanics. With it we may construct the equations of motion, define conjugate momenta,
construct constants of motion and attempt to quantize the system. In principle, we could
consider higher-order system functions which depend on @a,+1, ..., @uir, ¥ = 2,
but the case = 1 represents the simplest possibility which could give rise to non-trivial
dynamics and will be considered exclusively from now on. Such system functions are the
discrete time analogues of Lagrangians of the canonical forn L(q, q, 1).

Another reason for considering only a second-order formulatios= 1) is its direct
relationship to Hamilton’s principal function, discussed presently. Cadzow [1] applied a
variational principle to an action sum such as (2) and derived the equation of motion

d
0qy
where the symbok denotes an equality holding over a true or dynamical trajectory. We

c
shall refer to (3) as &adzow’s equation of motiofor the system. We now discuss the
interpretation of this equation.
Suppose we have a continuous time action integral of the form (1). First, partition the
time interval fo, zx] into N equal subintervals. Then the action integral may be written as
a sum of subintegrals, i.e.

{F"‘l—{—F"}fO O<n<N €))

N-1 Int1
ATl =Y / dr L(q(t). q(0). 1). @)
n=0 Y In
Now suppose that we fixed the coordinatgsat the various timeg, 71, ..., ty and then

choose the path connecting each pair of poigts 4,.1) to be the true or dynamical path,
that is, a solution to the Euler-Lagrange equations of motion for those boundary conditions.
If this partially extremized path is denoted by then we may write

N-1
Ai[Fl =) 5" ®)
n=0
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whereS” = S(qu+1, t.+1; @, t,) IS known as Hamilton’s principal function, being just the
integral of the Lagrangian along the true path frgpat timet, to g,,1 at timez, .

We recall now that the canonical momemtg’, pf:l at the endpointg,, q,.1 may be
obtained from Hamilton’s principal function via the rule

9 9
=) _ n (+) n
D1 = N D, -—S (6)
T 8gu 3Gy

where the superscript+) denotes that the momentum at the initial timeg, carries
information forwards whereas the superscript) denotes that the momentum at the final
time, 7, is influenced by earlier dynamics with respect to the temporal interval concerned.
At this stage the action sum (5) has not been extremized fully, as the intermediate points
g., 0 < n < N have been held fixed.

Now suppose we went further and extremized (5) fully by variation of the previously

fixed intermediate coordinateg,n =1,2,..., N — 1. Then we would find that
a
a7{5"-1+s"}=o O<n<N. (7)
an ¢

This equation may be understood as the condition that the canonical momentum along the
true path fromg; to g, is continuous, that isp(™” =p{~). We notice immediately that (7)
L.

has the same formal structure as Cadzow’s equation (3) provided we make the identification
F'" < §".

Another interpretation of Cadzow’s equation is that it endows the action sum with the
additivity property of action integrals, which satisfy the relations

I 1] Iz
/ dtL+f dtL:/ dr L fo <t <t (8)
Io n Io

This property holds for all trajectories in continuous time mechanics, and not just for the
true or classical trajectory. In the case of system functions we may write

F(qn—l» qn) + F(‘Im qn+1) f f(qn—l’ qn+l) (9)

for some functionf of gq,_1 and g,.1, because Cadzow’s equation (3) is equivalent to
the statement thak” 4+ F"~ is independent o, along dynamical trajectories. However,
unlike action integrals, this property will not hold off the true or classical trajectory in
general.

3. System functions from Lagrangians

Two important ideas emerge from the similarity between (3) and (7).
(i) Although the concept of velocity as a limit does not occur in discrete time mechanics,
we will define a unique discrete time momentup), conjugate tag, by the rule

ad
p,=——F". (10)
dqn
This should be compared with the approach of Yamaretta [5] and Hashimotcet al [6]
and most other workers, where the momentum is defined as a derivative of a discretized
Lagrangian with respect to a difference. In our terms Cadzow’s equation reduces simply to
the statement that we may also calculate this momentum via the rule
ad
Pn = —F" (11)
9y
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(i) We will construct a system functiod” from the temporal integral from, to 7,1
of a continuous time Lagrangian, the question being which path to take. We cannot in
general consider using the true continuous time path, as this is meaningless in the context
of discrete time mechanics and normally not known to us. For the particularly important
case of the harmonic oscillator, however, we can evaluate Hamilton’s principal function
precisely and this provides us with an important check on our formalism. The path chosen
in the construction of the system function will be referred to agrtal path

It is possible to choose from a number of possible virtual paths, such as those inspired
by g-deformed mechanics [7]. This does not alter any of the principles we employ, it simply
changes the details of the system function used and hence the sort of invariants of motion we
can find. In this paper we are interested in treating time homogeneously, and so we choose
a temporal lattice with a constant fundamental time intefvalOur proposed solution for
the virtual path in point particle mechanics is to take the geodesic or shortest geometric
path fromg, to q,.1, the metric normally being the Euclidean one in physical space (not in
coordinate space). This prescription will normally provide us with a unique system function
from a given Lagrangian. Moreover, it should be applicable to configuration spaces with
curvature and is a coordinate frame independent concept. It allows us to construct a gauge-
invariant discrete time prescription for electrodynamics, with a suitable modification. In
paper |l of this series we shall show that we can also apply this prescription successfully to
field theories. There may be important cases where the chosen virtual path is not a linear
interpolation. This occurs for charged fields in the next paper in the series. In such cases,
additional requirements such as gauge invariance will influence the choice of virtual path.

To illustrate the procedure, consider a non-relativistic particle with position vactor
and Lagrangiarl(x, , t). Then the virtual patle, taken betweerne, andx, ; is given

by
&y = ATpyp1 + A, (12)

where 0< A < 1 andi = 1 — A. With this choice of virtual path the time derivative
becomes a difference operator. Specifically, we find

d Ln+l — Ln

~n = ﬁh’n = — 13
b= ;3 - (13)
where we define

fy = Mys1 + Ay = 1, + AT. (14)

Then we construct the system function via the rule
1
F" = Tf di L(Z,,, O, 1y). (15)
0

The use of this integration does not imply that continuous time is regarded as being
meaningful in the context of discrete time mechanics. We are interested only in the results,
not in the means of obtaining these results. A useful analogy is with the use of classical
mechanics to set up quantum mechanical models. Once we have found our quantum theory,
we no longer need to regard the classical model which generated it as any more than some
approximation useful in some circumstances. Our prescription allows us to embed into our
system function fundamental properties such as gauge invariance and other symmetries of
importance to physics.

If the Lagrangian is a real analytic function of its arguments then we may make a Taylor
expansion about, and integrate term by term. This will be valid for Lagrangians which
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are polynomial functions af andz. In such cases the system functigfi would be given
by the formal expression

T,
F'=T Z mL(mn’ Uy, 1) (16)

m=0
where D, is the operatow, - ;2
stage.
Some examples will illustrate the process. For a particle in one dimension with
Lagrangian

+ % andwv, andx, are considered independent at this

o0
L=3mi? = Cx' (17)
r=0
where theC, are constants, the system function is given formally by
r+1 r+1
F' = m(xn-‘rl - xn)z _ i Cr(anrl - ‘xn+ ) ) (18)
2T r=0 (7‘ + 1)(-xn+l - xn)
For instance, the anharmonic oscillator Lagrangian
L= gme — %ma)zx2 — %mkxA (19)
gives the system function
e MGt =5 Tme?® 0l =30 Tmd (50— x7) (20)

ZT 6 (xn+1 - xn) 20 (xn+l - xn) '

This differs from the anharmonic oscillator system function discussed in [10, 11], which
illustrates the general problem with discrete time mechanics. There may be many possible
discretizations of a given continuous time system, all of which lead back to the continuous
time theory when we take appropriate limits. The principle specified above gives us a
unique discretization (subject to choice of virtual path).

For the Coulombic potential problem in three spatial dimensions, the Lagrangian

L="4%.2+ 1 (21)
2 ||

with virtual path(12) gives the system function

F' = m(Tpp1 — wn)z yT {wn+1 “(Tpg1 — Tn) + [ Tagal|Tag1 — Ty } (22)
2T |wn+l - xn| Ty * (wn+1 - wn) + |$n||$n+1 - wn' .

This system function leads to Cadzow’s equations of motion which preserve the discrete
time analogue of orbital angular momentum. This system function is markedly different in
form to the original Coulombic Lagrangian (21) but if we consider trajectories for which
we may writez, = r,, T,11 = 1, + Tv, + O(T?) for eachn, then

| Fy 1 Y

}";no{ T } = M et (23)
which corresponds with (21). However, it should be kept in mind that there will be many
discrete time trajectories for which this limit cannot be taken. For example, there may be
trajectories where the particle repeatedly flips between two fixed positions only. This may
happen with the discrete time harmonic oscillator, for example, and no limit such as the one
discussed above exists for such a trajectory. Discrete time mechanics is inherently richer
in its set of possible trajectories than continuous time mechanics.
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In general, Cadzow’s equations lead to an implicit equationcfgf involving x, and
x,_1, although for certain systems such as the harmonic oscillator discussed below we may
solve Cadzow’s equation to fing . ; explicitly. The situation is analogous to what happens
in computer simulations of partial differential equations where not all equationsxgive
explicitly. In such cases we must use numerical techniques to solve for,thein the
classical theory. It is a special feature of our approach that our equations of motion involve
only x,_1, x,, andx,.1, which is not always the case with finite difference schemes used
to approximate differential equations.

4. Invariants of motion

It is possible to find a discrete time analogue of Noether's theorem in the case of continuous
symmetries along the lines considered by Maeda [3]. We shall refer to constants of
motion found by this theorem ddaeda—Noether invariantsConsider a system function

F" = F(qn, g:.+1) Which is invariant to some point transformatiagn — ¢, = g, + 8g,.

Then we may write

aF" oF"
0=46F"= - 8q, + - 8qn11
8Qn 8Qn+l
QF" aFnJrl
=5 " 5‘1:1 - : 8q11+1 (24)
¢ B(In 3Qn+1

using Cadzow’s equation of motion. From this we deduce that the quaritity %—5" - 8q,
will be conserved along dynamical trajectories, that is,

ol ? Cn+1. (25)

This construction does not allow us to construct an analogue of the Hamiltonian in
the case of conserved systems because in our formulation we are not allowed to make
infinitesimal jumps in time.

Logan [2] gave a method for constructing constants of motion which are not necessarily
related to symmetries of the system function. Consider a point transformation

q, — q,/l =q, + €y, (26)
wherece is infinitesimal andu, is a function ofg, andgq,,;. Then

OF" aFnJrl
U, — €
aQn BQH+1

aF" " oF"
s Uy,
aqn aanrl

SF"=¢ { . un+1} =€ cu,1 (27)

on the true trajectories. Now suppose that transformation (26) is suct$ ffatan be
written in the formé F" = €v,,.1 — €v,, wherev, = v(g,). Then we immediately deduce
that the quantity

9
~ 0g,

n

U, + v, (28)

is conserved over the classical trajectories. Such a constant of motion will be referred to as
a Logan invariant
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5. The discrete time harmonic oscillator

5.1. A Logan invariant for the harmonic oscillator

The discrete time harmonic oscillator in its generic form is given by the quadratic system
function

F' = a0 +x70) = Bxaxnss B #0 (29)
which gives Cadzow’s equation of motion

X+l = 210 = Xn—1 n= % (30)
A Logan invariant of motion is found to be

C'= %,B(xs + x3+1) — AXp Xyl (31)

5.2. Limiting behaviour

In this section we show how to solve the equation of motion (30) and determine the
behaviour of the oscillator as the discrete time tends to infinity. First we define the variables

ay =Xy — W Xn41 (32)

which will become the analogues of annihilation and creation operators in quantum theory.
The constantg™ are chosen to satisfy the condition

af = /Liail (33)
under the equatioh of motion (30), which implies

@ =(u*)"ay. (34)
Condition (33) gives

ut=n+ \/m (35)
We note thatu™ =~ = 1. The Logan invariant (31) is given by

Cc" = %,Ban a, (36)

which is a constant of motion by inspection and is a form of great value in discrete time
field theory.
The complete solution to the problem is now readily obtained and given by

_ " = )+ [t = (uh)" Hxo

"= = n?# 1 (37)
For the case when? < 1 we write) = cog6) and then we find
’ sin(n@)xy, — sin((n — 1)0)xg (38)

< sin(9)
whereas fom? > 1 we writey = cosh(x) (assuming; > 1), and then
__sinh(my)x1 — sinh((n — 1) x)xo

"o sinh(x)
and similarly forn < —1. The crucial result is that bounded, elliptic behaviour occurs when
n? < 1 whereas unbounded (hyperbolic) behaviour occurs witen 1. This result gives

a natural cut-off to particle momentum in field theory, as shown in paper II.

(39)
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The readily solved case wheR = 1 corresponds to the free particle and will be referred
to as theparabolic case. Whem? > 1 the system will be said to Heyperbolicandelliptic
whenn? < 1.

For the case)? < 1 it is useful to definex = n +iy/1 — n? and

an = " [Xnt1 — pxn] ay = p " X1 — 1) (40)
the advantage being that these are constants of motion, namely

A = Gn—1 ay = ay_q. (41)

These are useful when constructing particle states in quantum field theory because they
correspond to annihilation and creation operators in thediihger picture.

5.3. The Newtonian oscillator

Using the methods outlined in section 3, the continuous time Lagrangian for the Newtonian
harmonic oscillator

L= %m}'cz — %ma)zx2 (42)

gives the system function
a1 — )% Tmo?
F* = +2T - 6 (x3+1 + Xn+1Xn + x,f) (43)
which is equivalent to (29). The equation of motion is given by

(xn+l - an + xn—l) - —6()2 (xn+1 + 4xn + xn—l)

44
72 = 6 (44)
which is equivalent to (30) with the identificatidffw? = 6(1 — )/(2 + 1), which means
6 — 27T2%w?
- 45
1= 6+ 1202 (49)

Using the results of the previous section, we deduce that elliptic behaviour occurs only
when the timeT satisfies the condition

0<Tw<2V3. (46)

An equivalent result is found in particle field theory, giving a natural cut-off for particle
momentum.

5.4. Harmonic recurrence

We may understand the relationship between Hamilton’s principal function for the interval
[0, T] and the system function by explicitly evaluating the former for the continuous time
harmonic oscillator Lagrangian (42). We find

maw
n T) = 2 2 T) — 47
S™(T) 2sinwT) [(Xn+1 + xn) coSwT) 2xnxn-kl] ( )
and comparing this with (43) we find
S"(T) = F" + O(T?3). (48)

We expect a similar relation to exist in the general case, but different potentials will modify
the precise details.

There is an apparent problem with (47), whenever the time intefvahtisfies the
conditionwT =rm,r =1, 2, ... because the denominator &ir7") vanishes at such times.
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This problem is an artefact of our representatiod’gfbecause the definition of the principal
function as a line integral over a finite contour of a bounded integrand mean$'tbahnot
diverge. The resolution of this apparent paradox is that atdberrence times' = rx/w
the endpoints,, andx,,; are no longer independent but are related by

Xpr1 = (=1 x,. (49)

The physical interpretation of recurrence is simple. The harmonic oscillator has a
fundamental period® = 27 /w, independent of the initial conditions.

An important construction for the harmonic oscillator are the varialdlgsA’ defined
by

ieinO

An = -7[xn+l - eiexn]
sin(®) (50)
_Ie—mO io 9 T
A= ——[xpp1— € "x, = wT.
"= singg) Pt €l @

These are constants of motion, i&, = A,+1 and are independent @f. This means that
c

recurrence must occur so as to cancel the zero of the denominator in (47) at the recurrence
times. To see what happens explicitly, we may invert equations (50) to find

X, = %[einﬁA: + e—inOAn] Xpi1 = ;2L[ei(n+l)9A: + e—i(n+1)0An] (51)
so that at the recurrence tim&s= rrz/w we have

—1™
=+ Al (52
from which we deduce (49).
In terms of A, and A} the principal function can be written as

mao Sin(@)
4

a form which shows clearly that the principal function is not singular. Moreover, we see
that at the recurrence times
rm

W(z)zo r=12.... (54)

Sn(T) — [ei(2n+1)(9A;)1<2 + e_i(2n+1)0A,21 (53)

It is a significant feature of the discrete time harmonic oscillator that it does not involve
recurrence phenomena in this particular way, as no apparent singularities occur in the system
function (43). This emphasizes that discrete time mechanics is not equivalent to continuous
time mechanics.

6. Electrodynamics: test particles

We now consider the case of electrically charged particles interacting with electromagnetic
fields. A more complete discussion of discrete time Maxwell's equations is given in paper Il
of this series. Here we discuss only the case of test particles which are affected by external
electric and magnetic fields but do not affect them. We shall find the Cadzow equation of
motion for such particles and show that in our prescription electric charge is conserved.

Consider a non-relativistic charged test particle of masis external electromagnetic
potentials. The continuous time Lagrangian for such a system is given by

Lpy = jmi - &+ qa - A(x, 1) — qp (. 1) (55)
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where ¢ is the charge of the particle. This Lagrangian is not gauge invariant but the
equations of motion are gauge invariant, because under the gauge transformation

¢—> ¢ =¢+dx

A—- A =A-Vy
the action integral transforms according to the rule

Aif > Ajp = Aip — [ax]] (57)
that is, the change in the action integral occurs only at the endpoints. If this property is
preserved in any discretized version of electrodynamics then the equations of motion should
be gauge invariant. Our prescription for calculating the system function from the Lagrangian
does indeed preserve this property and therefore our discrete time equations of motion are
gauge invariant.

The first step is to construct discrete time electromagnetic potentials. These are discussed
in full detail in paper Il, but the basic properties are the following. The magnetic vector
potential, A, differs from the scalar potentiad;, in that the former is defined at temporal
lattice sites whereas the latter is defined on the links between these sitds(adf is the
value of the vector potential at timeat positionz, andg, (x) is the scalar potential on the
link at positionz from timen to timen + 1, then under a discrete time gauge transformation
we have

(56)

LN Xnt+1(T) — xn ()
¢ (@) = (@) + = —— (58)

A (x) = Ay () — V()
where yx,(x) is the value of the gauge transformation function at titnand positionz.
The electric and magnetic fields are defined by
Aypa(e) — Ay ()
T (59)

E,(x) = —Véu(x) —

B,(x) =V x A,(x).

These are discrete time gauge invariant. By inspection the electric field is associated with
temporal links whereas the magnetic field is associated with temporal sites.

In order to apply our discretization prescription to (55) we specify the virtual paths
between times, andz, 1 to be given by

&y = ATy + Az,
A, (&) = M 1(@) + LA, () (60)
G (&) = b (E0)

and then the system function is given by

m(x, — Iy 2 ! ~ ~ ! ~ o~
pre MRS = e [ 6 A0~ T [ didiG. (61)
Under a gauge transformation we find
F" =F" + g xn (mn) - an-‘rl(a:n-‘rl) (62)
and so the action sum” = Z,ﬁ’z’ol F" changes according to the rule
AV =AY +gx0—qxn (63)

in agreement with (57). Therefore, we expect Cadzow’s equations of motion, obtained from
(61), to be gauge invariant.
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In general, the integrals over the external electromagnetic potentials in (61) give
complicated equations of motion and we will normally have only an implicit equation
for x,. 1, which however will be gauge invariant. We find

m(wn-‘rl - an + wn—l)

1
=q / dx {)_‘En (i:n) + )\Enfl(i:nfl)}
¢ 0

T2
(:12,,+1 — ) ! da 7 7 32 T
e | {ABy11(Z,) + A°B,(Z,)}
(wn - ml’l—:l.) ! 2 ot by T
g @) / dh (A2, (&,-1) + AA B, 1(E,-0)). (64)
0

In the limit T — O we recover the usual Lorentz force law
C

for those trajectories where the limit exists.
The charge densityp,(x), and current densityj,(x), are defined by the following

functional derivatives with respect to the electromagnetic potentials of the actionasm,

-1 3 . )

= N ) = N

T S¢,(x) T §A,(x)

We find
1
pu(T) = ¢ f dr83(@, — x)
0

(Tusr — Ta) [* (@) — xpo1) [T (67)
o) = gt o) / MA@, —z)+q f dAA83(&, 1 — x)
T 0 T 0

which satisfy the discrete time analogue of the equation of continuity

Mw.ﬁ(m)ﬂ-

7. The Grassmannian oscillator

We may apply our methods to the Grassmannian oscillator system, which serves as a
prototype model for the Dirac equation studied in paper Il. Our model consists of one
complex anticommuting degree of freedoin, with equation of motion

i =y " =—wy*. (68)
The Lagrangian giving these equations is
L =35iy"y — 510"y — oy y. (69)
Equations (68) imply the harmonic oscillator equations of motion
d2 2 d2 * 2 1 %
Now consider discretization using the linear virtual paths
V=M Ay, YT =M Ay (71)

Using (69) we find that the system function is

{21//:4,_11”71-#1 + w:wn-kl + 1/f,;k+11//n + Zl/f:wn}
6

F" = 3ilyidass — ¥l — T 72
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which leads to the equation of motion

i (anLl - 1pnfl) —w (1/fn+l + 4wn + wnfl)
2T © 6

and similarly for the complex conjugate. It does not seem possible to use (73) to obtain
the discretization (44) of the harmonic oscillator unless we change the virtual paths or
renormalize the frequency. However, we can readily show that (73) implies harmonic
oscillator behaviour by the following method.

First, rewrite (73) as

(73)

(—3| +K)1//n+l+ (3| +K)1//n—lf_4’(wn (74)

wherex = oT. If we define
i+« . —3it«

Ve —— Vo = —— 75
9+ k2 NCEWL (79)

and shift the degrees of freedom according to the rule

Y = Vn¢n (76)
then the variableg, satisfy the discrete time oscillator equation

¢n+l + ¢n—1 f 2n¢n (77)

_ X ;
wheren = T We find
: —2k +iv/9 — 3k?
p=n+iyl-n?= (78)

/94 k2

from which we deduce the upper limitT < /3 for elliptic behaviour in the system. This
is exactly one half of the upper limit found for the bosonic discrete time oscillator.

8. First quantization

We now discuss the possibility of quantizing our classical discrete time mechanics. If we
denote the process of quantization by the symalnd the process of discretization by the

symbol D then the question arises, do these processes commute, i.eQﬁbésDQ. In
other words, does it matter if we discretize the quantum theory of some system with classical
Lagrangian rather than quantize the discretized version of the same classical Lagrangian?
There isa priori no reason to expect these processes to commute. For one thing, we
have not yet decided wh&@ might mean. Also, there are some aspect®luch as the lack
of a Hamiltonian which makes a dynamical quantum theory of discrete time point particle
mechanics problematical. Fortunately, there are some concepts from the conve@ional
programme which are useful and appear to surfvé/Ne shall comment on some of these
aspects now and then consider the harmonic oscillator quantization pr@éess some
detail in the following sections, saving a discussion of Th@ process until paper II.
In the following we discuss a system consisting of a point particle in one dimension.
Generalization to more degrees of freedom is straightforward and we shall use the Dirac
bra—ket notation for convenience.
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8.1. Basics

In our approach to quantization, we shall follow all the standard principles of orthodox
guantum mechanics in the main. This means we face the same issues of rigour and
interpretation as orthodox quantum theory. We shall not comment on those in general. We
discuss below those aspects where discretization of time requires some additional emphasis
or comment.

Proposition 1.Physical states of a quantum system correspond one-to-one to rays in a

separable Hilbert spacé{. A physical state vectofp) will be in general normalized to
unity, namely

(¢l¢) = 1. (79)

Proposition 2.For each integer time (or more accurately, at each coordinate tin¥e), H
is spanned by an improper ba#¥é = {|x, n) : x € N}, the elements of which satisfy the
relation

(x,nly,n) =6(x —y). (80)
The resolution of the identity operator #i is
fH = /dx |x, n){(x, n| (81)

which holds for each.
Given a physical statg)) in H we may write for each

) = /dan(x)lx,m (82)
where, (x) is the wavefunction at time, with the property that
/dx Y (0)? =1 (83)

assuming normalization to unity.

Remark 1.The Heisenberg picture is being used in the above. The time dependence of the
basis setd3" allows us to use the Sabdinger picture, discussed below.

Remark 2.All the usual principles of quantum mechanics concerning the interpretation of
the states in the Hilbert space apply here. For example, (a) the superposition principle and
its interpretation according to standard quantum mechanics holds and (b) given two physical
states|¢), |¥) then the inner produclp|y) gives the conditional transition amplitude for

the system to be found in stalg), given it is in statgy ).

Definition 1. An operatorA, diagonal with respect t&", is one which can be written in
the form

A= fdxlx,n)A(x,Bx)(x,nl (84)

where the component operatdlx, d,) is some differential operator of finite order.
The action of such an operator on a typical staté is given by

|Ay) = Aly) = /dx lx, n) A(x, 9) ¥ (x) (85)

with matrix elements given by

(PlAY) =/dX¢>*(X)A(x,3x)I/fn(X)- (86)
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Remark 3.The wavefunctions of the theory are elements(3th), the space of square
integrable functions oft, and the operators (including the observables of the theory) which
act on them are usually built up of functionsxoéndo,. If at a given timep, the component
operator of some observable diagonal with respedf'tbappens to be represented by say a
multiple of 9, this carries no implication that the observable is related to a velocity (which
would normally be implied in conventional wave mechanics, where the momentum operator
is represented by-izd,). There is no concept of velocity in the normal sense in discrete
time mechanics.

Keeping in mind the caveats discussed in [12] concerning Hermitian and adjoint
operators, we define the Hermitian conjugate or adjoint operétoto have the property
that

(GlAY) = (y]|AT¢)" (87)
for a dense set of physical states. Afis diagonal with respect t6" then assuming we
may represend* in the form

At = /d_x lx, n)A(x, 3,)(x, n| (88)

for some operator component(x, d,) we find

/dXﬁ(X)A(x,E?x)lﬁn(X) Z/dX[A*(xvﬁx)flﬁI(X)]%(X)- (89)

Assuming that we are permitted to integrate by parts, which will be the case for normalizable
wavefunctions falling off at spatial infinity, we can readily understand the relationship
betweenA(x, 3,) and A(x, 8,). Given the former we can always work out the latter by
integration by parts and vice versa.

If A(x,d) = A(x,d,) then A = A" and the operator is self-adjoint. Physical
observables of the theory which are diagonal with resped@"tavill be assumed to have
this property.

8.2. Dynamics

The dynamical content of the theory is expressed in terms of unitagstep operators
U,, one for each.

Proposition 3.For eachn there is a unitary operatot],, such that
|x,n+1) = U,Hx,n). (90)
From this we deduce the relations
(x,n+ 1] = (x, nllA],,
Ix,n) = Uy,|x,n + 1) (92)
(x,n|=(x,n+ 1|0,J{.
Remark 4.The operatot, provides an isometry betweest and 8", that is
(x,n+1ly,n+1) = {x,nly,n) =8(x — y). (92)
Using the resolution of identity (81) we may represent the timestep operators in the
non-diagonal form

0n=fdx|x,n><x,n+1| A,j:fdx|x,n+1><x,n|. (93)
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We are now in a position to define the fundamental functions of the quantum theory,
the system amplitude®/, (x, y), defined by

Un(x,y) = (x,n+ 1y, n) = (x,n|U,|y, n)

. (94)
Ur(x,y) = (y,nlx,n + 1) = (y, n|U]|x, n)
from which we arrive at the non-diagonal expressions
0, = [ dxdy beon) UG )t
(95)

Ul :/dxdy lx, m)U; (v, x)(y, n|.

Remark 5.The system amplitudes will not be differential operators of finite order in general

but well behaved complex-valued functions of two real variables. Neither will they be

singular distributions. They are similar in function to integrated Feynman transition kernels
encountered in the path integral formulation of standard quantum mechanics.

The condition that the timestep operators are unitary, namely
0/102 = iH (96)
leads to the closure condition
[ uenuiey =6 -2 (©7)
on the system amplitudes.

Definition 2. A system for which the system amplitudes are independent of time, such that
we may write

Un(-x» )’)=U(X, y) (98)
for someU (x, y) and for alln, will be said to beautonomous

Definition 3. An autonomous system for which the system amplititie, y) carries the
symmetry

Ux,y)=U(y,x) (99)
will be said to betime-reversal invariant

Remark 6.Most of the system amplitudes of interest to us will be autonomous and time-

reversal invariant. This will be so whenever we construct system amplitudes from system
functions which have been obtained from conventional time-translation invariant and time-
reversal invariant Lagrangians using the virtual path approach discussed above.

8.3. The Schodinger picture

The Heisenberg picture description of the physical states used so far means that we may
write

|W=/W%MUWM+D=/WWWWW (100)
from which we deduce

P () = / dy Up (5, 1) (). (101)
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From this we see that the system amplitudes play a role analogous to finite time scattering
kernels in conventional quantum mechanics. Equati®i) is about the closest we come
in this theory to something analogous to a time-dependent8itger wave equation.

We may set up a formal description in the Sidinger picture as follows. Given a
Heisenberg picture state¢’) and a knowledge of the component functiohgx), define the
sequence of states

1Ynm) = fdx Y (X)X, m) (102)
for some chosen time:. Then if |,,.,,) = |¥) we find

0m|¢m,m> = |Wm+1,m>- (103)

It is straightforward to extend this to jumps over more than one time interval. This
establishes the Sabdinger picture in this theory.

8.4. Position eigenstates

Given an improper basi8" = {|x,n) : x € R} we may construct a self-adjoint position
operator

Xy = /dx |x, n)x(x, n| (104)
which has the property

Xnlx, n) = x|x, n). (105)

Remark 7.For convenience we shall follow the traditional abuse of notation and use the
symbolx for both the position operator and a particular eigenvalue of that operator. It will
be clear normally from the context what is meant whenever a clash of notation occurs.

The position operators have the merit of being diagonal with respect to the appropriate
basis, that isg, is diagonal with respect t8”. The position operators are not necessarily
diagonal with respect to bases at other values.ofrom the condition

Ruy1 = U2, (106)
we find

fuva = [ dedyde e m) U003 U0 2 (107)
which is self-adjoint but not necessarily diagonal with respedf’to

Remark 8.It is possible forx,.; to reduce to diagonal form with respect to thé basis
but this depends on the details of the system amplitudes.

From the above we arrive at the fundamental expression for the commutators:

[frr, ] = / dr dy dz [x m) U2 (v, 2)y(z — 2)Un(y, 2) (2. 1. (108)
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8.5. Normal coordinate systems

In this section we discuss the quantization of a large family of systems for which the
following property holds.

Definition 4. Coordinates for a system for which the right-hand side of the commutator
(108) is a multiple of the identity operator for each valuenofiill be called normal

Remark 9.We shall see below that the coordinates for the important system equivalent to
the harmonic oscillator are normal.

A class of system amplitudes for which the coordinates are normal may be constructed
from autonomous, time-reversal invariant system functions of the form

F(xm anrl) = _ﬁxnanrl + %W(xn) + %W(xtﬁl) (109)
whereg is a non-zero constant. The Cadzow’s equation for this system is
Xr1 = BTW () = Xao (110)

which has the merit of giving,,+1 explicitly in terms ofx, andx,_;.
Now define the system amplitude to be given by

Up(x,y) = keF o0/ (111)

wherek is some constant. Then from the unitarity condition (97) we find

> B
k| = g (112)
From (108) we find
R R —ih
[anrls xn] = ﬂ (113)

so that the above coordinates for this system are normal. Moreover, with the momentum,
Pn, CONjugate tar, defined by (10), we recover the conventional commutator

[, Xn] = —ih. (114)

This result is not expected to hold for systems which are not normal.
The operator equations of motion are found to be

Royr =P W, — 241 (115)

where W’ is the diagonal operator

W,; = /dx |x, n) {dVZ)Ex) } (x,n|. (116)

From this we obtain the discrete time version of Ehrenfest’s theorem; i.e.
(£ni1) = B7HW,) — (£y-1) (117)

for expectation values over a physical state.
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8.6. Compatible operators

In our theory the quantum dynamics is completely determined by the system amplitude.
Suppose now that the system is autonomous and time-reversal invariant. This means that
for each timen we may write

Unx,y) =U(x,y) (118)

whereU (x, y) is independent ofi. For such a system there may be constants of motion
comparable with the Maeda—Noether and Logan invariants discussed in the classical theory.
Consider an operatot;, diagonal with respect t#", namely

¢ E/dx|x,n)C(x,8x)(x,n| (119)

where C(x,ax)Ais some differential operator of finite order. Matrix elements of the
commutator ofC with U are given by

@IIC, Ully) = fdx dy g7 (){C(x, 3)U (x, y) — C*(y, 3,)U (x, Y} (») (120)

where|yr) and|¢) are arbitrary physical states. From this we arrive at the following result

Theorem A diagonal operator commutes with the timestep operator of an autonomous
system if

C(x, 3)U(x,y) = C*(y, 3,)U(x, y). (121)

Definition 5. A diagonal operator which commutes with the timestep operator of an
autonomous system will be said to bempatible(with the timestep operator).

Remark 101t is not necessary for a diagonal operator, to be self-adjoint for it to be
compatible with the timestep operator.

Remark 11From the above we deduce that compatible operators are invariants of motion.
To be explicit, consider a stat¢’) which is an eigenstate of the diagonal operatgrwith
eigenvaluer, i.e.

Cly) = cly). (122)
Then we can show

C(x, 0:)Yn(x) = cn(x) (123)
and

C(x, 0:)Yns1(x) = c¥uy1(x). (124)

Remark 12Given the system amplitud€ (x, y) it may be very hard or perhaps even
impossible to find any compatible operators in closed form. It may be necessary to
approximate such an operator via a perturbative expansion, for example. This is the quantum
theory analogue of the problem of finding invariants of motion for a classical discrete time
theory given some system function.

Remark 13 Discrete time and continuous time quantum mechanics pose dual problems
in the following sense. In continuous time quantum mechanics we are normally given
a Hamiltonian and the problem is to construct the time evolution operator. For a time-
independent Hamiltonian a complete solution would require us to find all the eigenvalues
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E, and eigenstateisE,,) of H and then use them in the formal solutio = exp{—iH1/T}
to write

U =Y |Ea)e 5 ME,|. (125)

This is, in general, a formidable problem. In discrete time quantum mechanics the situation
is the other way around. Given a system amplitude, the problem is to find the compatible
operators, if any. An important system where answers can be found to all of these questions
in both approaches is the discrete time harmonic oscillator discussed in section 10.

9. Stroboscopic construction

In principle it should always be possible to construct examples of discrete time quantum
systems by integrating the equation

iho,U (1) = HU (1) (126)

for the evolution operatorl (t) in continuous time quantum mechanics, given the
Hamiltonian H. The boundary condition

lim Ut) = Iy (127)

t—

ensures a unique solution. From this point of view the discussion outlined above represents
a stroboscopic approach, where the state vectors evolve continuously but are looked at
periodically in a non-destructive (mathematical) sense. This examination of the state vector

is not the same as an observation collapsing the wavefunction.
For autonomous systems a formal solution to (126) is

U(t) = exp(—iHt /h). (128)

In this approach the transition amplitud&x, y; ) = (x, t|y, 0) corresponds to our system
amplitude wherr = T and may be evaluated in a number of ways. For example, the
Feynman path integral method gives the formula

(x,t|y, Q) ~ f[dz] exp{}i_l/O dr' L(z, z,t’)} t>0 (129)

whereL is the Lagrangian, such amplitudes being functions afid the endpoints and y.
The standard approach to the evaluation of such integrals is, rather interestingly, based on
the discretization of time. The time interval,[Q is partitioned into a finite numbeN of
equal steps, the integrand in the exponential is approximated suitably (by what amounts to
choosing a virtual path in our approach), tNeintegrals are evaluated, and then the limit
N — oo taken.

The relationship between this approach and our discrete time formalism should now be
clear, the basic difference being that we do not take the I¥hit> oco. In a number of
situations our system amplitude will actually take the form

U(x,y) = (x,Tly,0) ~expliF (x, y)/h} (130)
and then forN timesteps the transition amplitude, NT|y, 0) becomes
(x, NT|y, 0) ~/.../dxldx2...dx,v,1 exp(iAN /h) (131)

which emphasizes the relationship further.
An important point which could be confusing is that the system function in (130) does
not correspond to a Logan constant for those systems such as the harmonic oscillator where
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such an invariant can be found. System functions in general are not expected to be invariants
of motion.

An alternative method of constructing the transition amplitudes is to find the Green'’s
functions for the system. If the transition amplitui&x, y; t) satisfies the homogeneous
Schiddinger equation

(o, — HOU(x. y.1) = 0 (132)
with the boundary condition

lim U x, y, 1) = 83(x) (133)

—

then the retarded and advanced Green’s functiGpsér, v, 1) and G4(x, y, r) are related
to the transition amplitude by

GR(xs Y, t) = Q(I)U(xs Yy, t)

(134)
GA(.X, Yy, t) = —9(—t)U(.X, Yy, t)
and these satisfy the inhomogeneous equation
(7o, — H)G(x, y, 1) = ih8(1)8%(x). (135)

If we can solve this equation, we can immediately construct the transition amplitude using
the relation

Ulx,y,1) = Gr(x, y, 1) = Galx, y,1). (136)

9.1. Example: the free Newtonian particle

Given the Hamiltonian
p-p

H="—"= 137

5 (137)

in continuous time mechanics we can readily find the Green’s functions in the quantum
theory. We find

i 3/2 . o
GR(:c,y,t)ze(;)(ZjT'i_’?t) exp{;_lm(:c y;t(a: y)}

. 3/2 .
B —im Im(x—1y)-(x—1y)
Galz,y,1) = —0(—1) <27Tﬁt> eXp{ﬁ 2 }
from which we construct the transition amplitude

(138)

i 3/2 : _ . _
U(z,y,t) = <2nlgt> exp{;d_m(:c y;t (@ y)} t>0  (139)

This satisfies the closure condition (97)

f By Uz, y; HU* (2, 4; T) = 83(x — 2) (140)

for a system amplitude and demonstrates the essential point that it is possible to construct
examples of discrete time quantum mechanics from continuous time quantum mechanics.
The converse need not be true. Given a system amplitude, it may be impossible to find a
compatible operator equivalent to some second-order Hamiltonian operator in continuous
time mechanics. It is not difficult to find examples of normal systems where this occurs.
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10. The discrete time harmonic oscillator

Given the discrete time harmonic oscillator system function
F" = F(xp41, x,) = %O‘(x3+1 +X3) — BXpy1x, (141)

we note that it is an example of a normal system. This leads us to define the system
amplitude to be

Un(x,y) = kexp(iF (x, y)/h)
=k exp(zlﬁ[ozx2 +ay? — Zﬂxy]) (142)

wherek is some constant. From the unitarity condition (97) we find (112) and from (108)
we find (113), so we see that the above system’s coordinates are indeed normal. The
self-adjoint diagonal operator with operator component

=~ _1

C, = 3B7H-h%92 + (B — a)x?] (143)
is compatible with the system amplitude (142).

The interpretation of this is thf: is the operator corresponding to the Logan constant
for the classical discrete time harmonic oscillator

C = 1B(x% + %) — axy. (144)

To see this explicitly, consider the operatotsand x,,;. The Logan constant for the
harmonic oscillator is quantized according to the standard rule

A 1 8o a ~ 1 /2 & ~ a
C= Qﬂ(-xnxn + -anrl-anrl) - Qa(xnanrl + xn+lxn)- (145)

A suitable coordinate representation of these operators with respect to théhasis
h
Xp — X Xpi1 — X — IBE)X (146)

and then operator (145) is represented by (143).

We see from the potential term in the differential operator (143) that a complete set
of physical states can be found as eigenstates of the operator prggddedo?. This
corresponds precisely to the elliptic region discussed in the classical theory.

If the constants satisfy the elliptic condition, we may construct annihilation and creation
operators for the system. These are diagonal with respect to any of theffases are
given by

. H i i E
ap, = ie"[x,41 — €%,] = € / dx |x, n) {\/1 —n2x + ﬂax} (x, n|
_ . : h
af = —ie"[R, — e}, =" / dx |x, n) {\/1 —n2x — ﬁax} (x, n|.

These operators satisfy the commutation relation

1= 12
[4,.671= Y- " (148)

(247)

p
Using the evolution relation (106) and the operator equation of motion
)2,,4_1 = 27’])2,[ - )2,,_1 (149)

we find
Apni1 = ay (150)
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but this does not mean that this operator is conserved. A conserved operator, according to
our definition, must be compatible with the timestep operétar We find that the creation
and annihilation operators satisfy the relations

U,a, — €°4,0, =0

7 At 0 A+77

Uwa, —€"7a,U, =0
which is reminiscent of various deformed commutators encountered in quantum mechanics.

However, operator (145) corresponding to the Logan congtént %,Ba:an is compatible
with the timestep operator and is therefore an invariant of motion. We find

C=1plata+aaty=1pata+iV1—n2n
R 92 1
= fdx |x, n) { Bl — nz)xz} (x, n|

(151)

28 ax2 2
=fdx|x,n>6§<x,n|. (152)

This Logan invariant is a close analogue of the oscillator Hamiltonian in continuous time
mechanics and the eigenstates of the former follow the same pattern as the eigenstates of
the latter. For example, there is a ground statg) satisfying the relation

an|Wo) =0 (153)
with normalizable wavefunction¥g(x) = WYg(0) exp{—%ﬁ‘/l — n2x?/h). This
wavefunction is also an eigenstate of the Logan invariant operator, with

C Wo(x) = 3y/1— nZhwg(x). (154)

These results hold only fan| < 1. We note from section 5.3 that= m (6+T?w?) /6T
and that

. C
lim — = ——— 8%+ “maw? (155)

when we identify our system with the Newtonian oscillator.

11. The inhomogeneous oscillator

In this section we discuss the inhomogeneous harmonic oscillator, which serves as a
prototype for the application of our quantization principles to field theories. We will use
the source functional techniques of Schwinger to obtain the ground-state functional and
various n-point functions of interest. Because the Schwinger method deals with time-
ordered products we should expect the discretization of the time parameter to involve some
changes in the details of the calculations.

First, given a system functiof” = F(x,, x,.1) we are free to introduce an external
source in any convenient way, as ultimately this will be set to zero. Our choice is to define
the system functiorF"[j] in the presence of the external source as

F'[j1= F" 4 3T jus1Xns1 + 3T jnXn (156)
a choice which allows the construction of time-ordered product expectation values directly.
The action sum from tim@/T to time NT (N > M) now becomes
N-1

AVMI = AN 4 Iy + AT jyxy + T Z JnXn M <N (157)
n=M+1
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from which Cadzow’s equation of motion is found to be
d
0x,

Quantization is introduced via the Schwinger action principle modified for discrete time.
We postulate that for an infinitesimal variatié@d V[ j] of the action operator then

{(F"+ F"™ Y +j, =0 M <n<N. (158)

8(¢, Nlyr, M) = —(p, NISANM[j]|y, M)/ M <N (159)

i
h
for any states¢, N), |y, M) attimesNT, MT respectively, with evolution in the presence
of the source. Independent variation of thefor M < n < N then leads to the equations

—ih 0 (@, NIy, M) = 2(¢, NIEuly, M)/

TafiM N N -3 9 Xm )

_T'haij.w), NIy, M) = (¢, NIZ,|y, M)} M <n<N (160)
i 0 (¢, Nly, M)/ = 2(¢p, N|Zy|y, M)/

TajiN s y =5 , XN , .

Further application of the principle leads to expectation values of time-ordered product of
operators, such as

AN G : . :
T 0Jm0Jn

where the symbol” denotes discrete time ordering. For example,
TinZn = Opon + 28m-)%nfn + (O + 38u_n)F0dn
= OpenXmXn + Sm—nXnXn + Op_mXnXm (162)
where®, is the discrete step function, defined by
O, =+1 n>0
=0 n<0 (163)
ands$, is the Kronecker delta, defined by
o =+1 n=20
=0 n#0. (164)
Given the harmonic oscillator system function

mxXy1 — X2)2  Tma?
F" = HZT o 5 (x3+1 + Xpa1Xn —i—xf). (165)
the classical discrete time harmonic oscillator in the presence of the external gpurce

satisfies the equation

T .
Xn41 ? 277Xn — Xp-1+ E]n (166)
wheren = /B with
m(1 — 2T%w?) g m(6 + T?w?)
6T N 6T ’

As discussed previously, elliptic (oscillatory) solutions occurifoi< 1 whereas hyperbolic
solutions occur fom? > 1. We will now discuss these possibilities individually.

(167)
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11.1. The elliptic regime

The importance of the elliptic regimg? < 1 stems from the fact that in field theory this
corresponds to physical particle configurations of the fields, i.e. solutions which can be
normalized.

Now define the action of theclassical) discrete time displacement operatér,, by the
rule

Unfn = fn+l (168)

for any function of the index, wheren is real. Then (166) may be written in the form
T

Uy — 20+ U, M, = g (169)

To solve (166) for the elliptic case we first define the following: sinée< 1 we write
¢ =co9d) =nands = sin(@) = +/1—n%2 > 0, taking 0< 8 < =. If we define
s, = sin(af) wherea is real then a useful identity is

SaSh—c + SpSe—a + SeSq—p = 0. (170)
From this we deduce

Sat1+ Sa—1 = 28, (171)
which is equivalent to

(Ua — 20+ U, Hs, =0. (172)

We define the matrices
A=t [S“” _S”} A=Al (173)
N Sn S1-n

and use (170) to prove

ACAP = AT (174)
If we write

X, = [xgl} J, = [gé] (175)

then (166) may be written in the form
X, =AX,_1+ J,. (176)

This equation may be readily solved using the properties of sthéunctions and by
diagonalizing the matrixA. We choose Feynman boundary conditions, specifying the
particle to be at positiorn,, in the past (at timeMT) and at positioncy in the future

(at time NT), giving

SSN—MXn =SSN—nXM + SSu—MXN
.

T n—1 N
+ﬂ{ Z SN—nSM—mJm + SN-nSM—nJjn + Z sMnSijm} (177)

m=M m=1+n
which is valid only forM < n < N. This can be tidied up into the form
N
x, = SN—nXM + SM—nXN _T Z G’]l\y}l\/[]m (178)
m=M

SN—-M SM—N
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where
G SN—nSM—m M < N
= <Km<n<
NM ,BSSN,M
= _NonSMom M<m=n<N
IBSSN—M
SM-nSN—m
=—-——"-" M <n<m<N. (179)
BSsn—m
ThenGY}, satisfies the inhomogeneous equation
BU, —2n+UHG™ = —8, M <n<N. (180)

Up to this stage we have take¥ > M with both finite, but normally we will be
interested in the scattering lim¥ — +o00, M — —oo. Also, we have appeared to have
overlooked the possibility thaty_,, vanishes in the denominator of the propagator (179)
for some values oV and M. We shall now address both of these issues directly.

Our method of avoiding possible singularities is to extend the Feynnlaprescription
to thed parameter. By inspection of the equation

6 — 2T%w?
=co9h)=— 5 181
n q6) 6+ 1707 (181)
we deduce that
w? > 0t —ie=0—>0—ie n— n+ie. (182)

With this deformation of the@ parameter and taking the limN — +oco, M — —o0, we
find

o0
Xn=F =T Y Gy (183)

m=—00

wherex, satisfies the homogeneous equation

U, —2n+UH%, =0 (184)
and
1 ) .
Gn_m = — el(minw@n—m 8m—n émim)e@m—n . 185
F 2Bis ( - " : ue)

This is the discrete time analogue of the harmonic oscillator Feynman propagator and reduces
to it in the limit T — 0, nT — t. A direct application of the discrete time Schwinger
action principle to the operator equation of motion

T
— Jn 186
; J (186)

then gives the ground state vacuum functional

Uy — 20+ U, D3R, =

—iT? &
211 = z0lew| o Y iGE ] 187)

n,m=—00

essentially solving the quantum problem. Using this result and (160) we find that in the
limit j - 0

o I o o
(0%,%,|0) = s (0|%,11%,]0) = %e 0 (188)
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From this we deduce
—inh

(OI[Xy41. £,]10) = 5 (189)
which agrees exactly with the discrete time oscillator commutation relation

N R —ih

[xn+1a xn] = 7 (190)

found previously.
Further ground-state expectation values of commutators may be obtained by using the
result

(O|T %, %,10) = IRG™ = 25 Zinee*”"*mw. (191)
For example, we find

Oz 510 = (192)
which agrees with the commutator

[Ru12, £, = _zﬂmn (193)

obtained from the operator equation of motion (149) and the commutator (190).

Another verification of the consistency of our methods is that we may use (188) directly
to find the ground-state expectation value of the Logan invariant (145) for the discrete time
harmonic oscillator. We find

(01C"10) = Y1 —n? (194)

which agrees exactly with previous results.

11.2. The hyperbolic regime

Becausel w is real and positive the controlling parameteras given by (181) takes values
only in the regions

elliptic: —1<np<l1: 0<Tw<2V3
parabolic: n=-1 Tw=2V3 (195)
hyperbolic: —oc0o<n<-1 2V3 < Tw.
If we parametrize; by the rulen = coqz) wherez is complex then if we take
n = COSH: 0<Tw<2V3
(196)
n = — coshi: 2V/3<Tw

then the range of possibilities (195) corresponds to a conigun the complex; = 6 —iA
plane which runs just below the real axis from the originztaand then runs fromr to
7 —ioco. The elliptic regime corresponds to valueszobn the first part of the contour, for
which A = 0+ ¢, wheree is infinitesimal and positive, corresponding to the Feynman
prescription.

The hyperbolic region corresponds to the part of the contour givenbyr—ii, : A > 0.
For this region analytic continuation of thg functions leads to

Sp —> i(_l)n+l§n (197)
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wheres, = sinh(rnl). From this the analytic continuation of the finite interval propagator
(179) gives

é’]lvni/[ = ¥{§N—n§M—m®n—m + §N—m§M—m8n—m + ®m—ngM—niN—m}
BSSn—m
M<n, m<N (198)
which satisfies the equation
BlU, — 20+ U HG = —8, . (199)
Taking the limitN = —M — oo gives the infinite interval propagator
Gnﬂn = (_)l+11—m {e(m—n))u®n7m 4 8nfm + e(n—m))\®m7n} (200)
F 285
which satisfies the equation
ﬂ{Un - 277 + Un_l}é’]l;m = _8n7m~ (201)

11.3. Comment

The elliptic and hyperbolic Feynman boundary condition propagators can be summarized
in the analytic form
T(2+cosz) _:
A — Lo e iln|z
r(m) 6misinz
T (2+ cos ; inz
_ @408 (incg, 15, + 670, (202)
6misinz
wheren = cosz andz lies somewhere on the contoilr discussed above. Thef’ (1)
satisfies the equation

BLU, — 20+ U A% () = =85, (203)

However, physical states correspond only to points in the elliptic regime, as the
wavefunctions will not remain normalizable in time otherwise. For example, we have
previously shown that the ground-state wavefunction for the discrete time oscillator in the
elliptic regime is given by

Wo(x) = Wo(0) exp(—3v/1— n?x?/R) (204)

demonstrating that analytic continuation to the hyperbolic regime will not give a
normalizable ground-state wavefunction.

12. Concluding remarks

In this paper we have shown that a consistent approach to the discretization of time results
in a consistent dynamical framework. Once the initial psychological hurdle of accepting
a dynamics without time derivatives has been jumped, then such a theory becomes as
reasonable as continuous time dynamics. Indeed, by taking the fundamental time interval,
T, small enough, it would appear possible to duplicate or approximate conventional theory
as closely as required. The obvious questiwhy consider discrete time mechanics at all?

has two answers. First, it may be the case after all that there is some fundamental limit to
time intervals, and so it becomes a matter of curiosity as to how far we can go along that
road. Secondly, there may be some novel properties in this approach which could prevent or
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alleviate the notorious problems with divergences which plague conventional field theories.
It is worth considering any approach to the regularization in field theory which is based
on just one assumption, namely that of a discrete time. The behaviour of the discrete time
oscillator holds the promise of potentially useful properties which may provide a cut-off for
particle energy.

In the next paper we apply our methods to classical field theories. However, no
divergence problems appear at that stage. In the third paper of this series, we shall
consider second quantization, and issues concerning divergences of Feynman diagrams will
be discussed in subsequent papers in some detail.
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